Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022235

RESUMEN

p53 plays a central role in tumor suppression. Emerging evidence suggests long noncoding RNA (lncRNA) as an important class of regulatory molecules that control the p53 signaling. Here, we report that the oncogenic lncRNA E2F1 messenger RNA (mRNA) stabilizing factor (EMS) and p53 mutually repress each other's expression. EMS is negatively regulated by p53. As a direct transcriptional repression target of p53, EMS is surprisingly shown to inhibit p53 expression. EMS associates with cytoplasmic polyadenylation element-binding protein 2 (CPEB2) and thus, disrupts the CPEB2-p53 mRNA interaction. This disassociation attenuates CPEB2-mediated p53 mRNA polyadenylation and suppresses p53 translation. Functionally, EMS is able to exert its oncogenic activities, at least partially, via the CPEB2-p53 axis. Together, these findings reveal a double-negative feedback loop between p53 and EMS, through which p53 is finely controlled. Our study also demonstrates a critical role for EMS in promoting tumorigenesis via the negative regulation of p53.


Asunto(s)
Carcinogénesis/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Senescencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones Desnudos , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
2.
EMBO Rep ; 21(4): e49269, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32128961

RESUMEN

Accumulating evidence suggests that p53 plays a suppressive role in cancer metastasis, yet the underlying mechanism remains largely unclear. Regulation of actin dynamics is essential for the control of cell migration, which is an important step in metastasis. The Arp2/3 complex is a major nucleation factor to initiate branched actin polymerization that drives cell migration. However, it is unknown whether p53 could suppress metastasis through modulating Arp2/3 function. Here, we report that WDR63 is transcriptionally upregulated by p53. We show with migration assays and mouse xenograft models that WDR63 negatively regulates cell migration, invasion, and metastasis downstream of p53. Mechanistically, WDR63 interacts with the Arp2/3 complex and inhibits Arp2/3-mediated actin polymerization. Furthermore, WDR63 overexpression is sufficient to dampen the increase in cell migration, invasion, and metastasis induced by p53 depletion. Together, these findings suggest that WDR63 is an important player in the regulation of Arp2/3 function and also implicate WDR63 as a critical mediator of p53 in suppressing metastasis.


Asunto(s)
Actinas , Neoplasias , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Ratones , Polimerizacion , Proteína p53 Supresora de Tumor/genética
3.
Mol Cell ; 53(1): 88-100, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24316222

RESUMEN

Hypoxia has long been linked to the Warburg effect, yet the underlying mechanism remains largely unclear. It is also not known if lncRNAs are involved in the contribution of hypoxia to the Warburg effect. Here we show that lincRNA-p21 is a hypoxia-responsive lncRNA and is essential for hypoxia-enhanced glycolysis. Hypoxia/HIF-1α-induced lincRNA-p21 is able to bind HIF-1α and VHL and thus disrupts the VHL-HIF-1α interaction. This disassociation attenuates VHL-mediated HIF-1α ubiquitination and causes HIF-1α accumulation. These data indicate the existence of a positive feedback loop between HIF-1α and lincRNA-p21 that promotes glycolysis under hypoxia. The ability of lincRNA-p21 to promote tumor growth is validated in mouse xenograft models. Together, these findings suggest that lincRNA-p21 is an important player in the regulation of the Warburg effect and also implicate lincRNA-p21 as a valuable therapeutic target for cancer.


Asunto(s)
Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Animales , Hipoxia de la Célula/genética , Células HeLa , Xenoinjertos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/patología , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Ubiquitinación/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(29): 14620-14629, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262817

RESUMEN

Deregulated expression of c-Myc is an important molecular hallmark of cancer. The oncogenic function of c-Myc has been largely attributed to its intrinsic nature as a master transcription factor. Here, we report the long noncoding RNA (lncRNA) E2F1 messenger RNA (mRNA) stabilizing factor (EMS) as a direct c-Myc transcriptional target. EMS functions as an oncogenic molecule by promoting G1/S cell cycle progression. Mechanistically, EMS cooperates with the RNA binding protein RALY to stabilize E2F1 mRNA, and thereby increases E2F1 expression. Furthermore, EMS is able to connect c-Myc to cell cycle control and tumorigenesis via modulating E2F1 mRNA stability. Together, these findings reveal a previously unappreciated mechanism through which c-Myc induces E2F1 expression and also implicate EMS as an important player in the regulation of c-Myc function.


Asunto(s)
Carcinogénesis/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , Células A549 , Animales , Factor de Transcripción E2F1/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Ratones , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/genética , Estabilidad del ARN/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Immunol Immunother ; 70(10): 2835-2850, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33659999

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD), a subtype of non-small cell lung cancer (NSCLC), causes high mortality around the world. Previous studies have suggested that the metabolic pattern of tumor is associated with tumor response to immunotherapy and patient's survival outcome. Yet, this relationship in LUAD is still unknown. METHODS: Therefore, in this study, we identified the immune landscape in different tumor subtypes classified by metabolism-related genes expression with a large-scale dataset (tumor samples, n = 2181; normal samples, n = 419). We comprehensively correlated metabolism-related phenotypes with diverse clinicopathologic characteristics, genomic features, and immunotherapeutic efficacy in LUAD patients. RESULTS: And we confirmed tumors with activated lipid metabolism tend to have higher immunocytes infiltration and better response to checkpoint immunotherapy. This work highlights the connection between the metabolic pattern of tumor and tumor immune infiltration in LUAD. A scoring system based on metabolism-related gene expression is not only able to predict prognosis of patient with LUAD but also applied to pan-cancer. LUAD response to checkpoint immunotherapy can also be predicted by this scoring system. CONCLUSIONS: This work revealed the significant connection between metabolic pattern of tumor and tumor immune infiltration, regulating LUAD patients' response to immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/genética , Humanos , Fenotipo , Pronóstico , Microambiente Tumoral
6.
J Biol Chem ; 294(1): 130-141, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30413534

RESUMEN

RNA polymerase III (Pol III) is responsible for the production of small noncoding RNA species, including tRNAs and 5S rRNA. Pol III-dependent transcription is generally enhanced in transformed cells and tumors, but the underlying mechanisms remain not well-understood. It has been demonstrated that the BRF1 subunit of TFIIIB is essential for the accurate initiation of Pol III-dependent transcription. However, it is not known whether BRF1 undergoes ubiquitin modification and whether BRF1 ubiquitination regulates Pol III-dependent transcription. Here, we show that RNF12, a RING domain-containing ubiquitin E3 ligase, physically interacts with BRF1. Via direct interaction, RNF12 catalyzes Lys27- and Lys33-linked polyubiquitination of BRF1. Furthermore, RNF12 is able to negatively regulate Pol III-dependent transcription and cell proliferation via BRF1. These findings uncover a novel mechanism for the regulation of BRF1 and reveal RNF12 as an important regulator of Pol III-dependent transcription.


Asunto(s)
Proliferación Celular , ARN Polimerasa III/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Células HEK293 , Células HeLa , Humanos , ARN Polimerasa III/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Ubiquitina-Proteína Ligasas/genética
7.
EMBO Rep ; 19(2): 305-319, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29295817

RESUMEN

The tumor suppressor p53 plays a prominent role in the protection against cancer. The activity of p53 is mainly controlled by the ubiquitin E3 ligase Mdm2, which targets p53 for proteasomal degradation. However, the regulation of Mdm2 remains not well understood. Here, we show that MARCH7, a RING domain-containing ubiquitin E3 ligase, physically interacts with Mdm2 and is essential for maintaining the stability of Mdm2. MARCH7 catalyzes Lys63-linked polyubiquitination of Mdm2, which impedes Mdm2 autoubiquitination and degradation, thereby leading to the stabilization of Mdm2. MARCH7 also promotes Mdm2-dependent polyubiquitination and degradation of p53. Furthermore, MARCH7 is able to regulate cell proliferation, DNA damage-induced apoptosis, and tumorigenesis via a p53-dependent mechanism. These findings uncover a novel mechanism for the regulation of Mdm2 and reveal MARCH7 as an important regulator of the Mdm2-p53 pathway.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Daño del ADN/genética , Daño del ADN/fisiología , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Ratones Desnudos , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Ubiquitinación/fisiología
8.
Genes Dev ; 26(12): 1376-91, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22713874

RESUMEN

Histone acetylation is a hallmark for gene transcription. As a histone acetyltransferase, MOZ (monocytic leukemia zinc finger protein) is important for HOX gene expression as well as embryo and postnatal development. In vivo, MOZ forms a tetrameric complex with other subunits, including several chromatin-binding modules with regulatory functions. Here we report the solution structure of the tandem PHD (plant homeodomain) finger (PHD12) of human MOZ in a free state and the 1.47 Å crystal structure in complex with H3K14ac peptide, which reveals the structural basis for the recognition of unmodified R2 and acetylated K14 on histone H3. Moreover, the results of chromatin immunoprecipitation (ChIP) and RT-PCR assays indicate that PHD12 facilitates the localization of MOZ onto the promoter locus of the HOXA9 gene, thereby promoting the H3 acetylation around the promoter region and further up-regulating the HOXA9 mRNA level. Taken together, our findings suggest that the combinatorial readout of the H3R2/K14ac by PHD12 might represent an important epigenetic regulatory mechanism that governs transcription and also provide a clue of cross-talk between the MOZ complex and histone H3 modifications.


Asunto(s)
Arginina/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Lisina/metabolismo , Transcripción Genética , Acetilación , Secuencia de Aminoácidos , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
9.
EMBO Rep ; 17(8): 1204-20, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27317567

RESUMEN

The c-Myc proto-oncogene is activated in more than half of all human cancers. However, the precise regulation of c-Myc protein stability is unknown. Here, we show that the lncRNA-MIF (c-Myc inhibitory factor), a c-Myc-induced long non-coding RNA, is a competing endogenous RNA for miR-586 and attenuates the inhibitory effect of miR-586 on Fbxw7, an E3 ligase for c-Myc, leading to increased Fbxw7 expression and subsequent c-Myc degradation. Our data reveal the existence of a feedback loop between c-Myc and lncRNA-MIF, through which c-Myc protein stability is finely controlled. Additionally, we show that the lncRNA-MIF inhibits aerobic glycolysis and tumorigenesis by suppressing c-Myc and miR-586.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , Activación Transcripcional , Ubiquitina-Proteína Ligasas/genética , Animales , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor , Genes jun , Glucólisis/genética , Masculino , Ratones , MicroARNs/genética , Unión Proteica , Estabilidad Proteica , Proteolisis , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Mol Cell ; 37(5): 668-78, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20227371

RESUMEN

The specific molecular events that characterize the intrinsic apoptosis pathway have been the subject of intense research due to the pathway's fundamental role in development, homeostasis, and cancer. This pathway is defined by the release of cytochrome c from mitochondria into the cytosol and subsequent binding of cytochrome c to the caspase activator Apaf-1. Here, we report that both mitochondrial and cytosolic transfer RNA (tRNA) bind to cytochrome c. This binding prevents cytochrome c interaction with Apaf-1, blocking Apaf-1 oligomerization and caspase activation. tRNA hydrolysis in living cells and cell lysates enhances apoptosis and caspase activation, whereas microinjection of tRNA into living cells blocks apoptosis. These findings suggest that tRNA, in addition to its well-established role in gene expression, may determine cellular responsiveness to apoptotic stimuli.


Asunto(s)
Apoptosis , Inhibidores de Caspasas , Citocromos c/metabolismo , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Animales , Apoptosis/efectos de los fármacos , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Bovinos , Supervivencia Celular , Citosol/enzimología , Doxorrubicina/farmacología , Activación Enzimática , Células HeLa , Humanos , Hidrólisis , Células Jurkat , Microinyecciones , Mitocondrias/enzimología , Unión Proteica , Proteínas Recombinantes/metabolismo , Ribonucleasa Pancreática/metabolismo , Ribonucleasas/metabolismo , Transfección
11.
EMBO J ; 32(16): 2204-16, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23749209

RESUMEN

The primary role of autophagy is adaption to starvation. However, increasing evidence suggests that autophagy inhibition also plays an important role in tumorigenesis. Upregulation of X-linked inhibitor of apoptosis (XIAP) has been associated to a variety of human cancers, yet the underlying mechanisms remain obscure. Here, we report that XIAP suppresses autophagy by exerting a previously unidentified ubiquitin E3 ligase activity towards Mdm2, which is a negative regulator of p53. XIAP controls serum starvation-induced autophagy downstream of the PI3K/Akt pathway. In mouse models, inhibition of autophagy by XIAP promotes tumorigenecity of HCT116 cells. XIAP-mediated autophagy inhibition is also largely validated in clinical tumour samples. These findings reveal a novel XIAP-Mdm2-p53 pathway that mediates the inhibition of autophagy, by which XIAP may contribute to tumorigenesis.


Asunto(s)
Autofagia/fisiología , Transformación Celular Neoplásica/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Western Blotting , Células HCT116 , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Microscopía Electrónica , Interferencia de ARN , ARN Interferente Pequeño/genética , Inanición/fisiopatología , Células Tumorales Cultivadas
12.
PLoS Pathog ; 10(6): e1004169, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901708

RESUMEN

Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a ß-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus.


Asunto(s)
Adhesinas Bacterianas/química , Adhesión Bacteriana , Interacciones Huésped-Patógeno , Modelos Moleculares , Mucosa Respiratoria/microbiología , Staphylococcus aureus/fisiología , Factores de Virulencia/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mucosa Respiratoria/metabolismo , Staphylococcus aureus/patogenicidad , Trisacáridos/química , Trisacáridos/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
Adv Exp Med Biol ; 927: 337-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27376742

RESUMEN

p53 is one of the most important tumor suppressors and is known to play critical roles in the process of tumor development. Similarly, as an important proto-oncogenes, c-Myc is activated in over half of human cancers. Both p53 and c-Myc participate in almost every crucial decision of almost every cell. Therefore, it is utmost important to gain a better understanding of how they affect multiple cellular processes. The physiological and pathologic patterns of p53 and c-Myc regulations are modulated by a large number of cis-elements and transfactors (RNAs and proteins). These elements and factors are composed of a complicated network of intracellular and extracellular pathways. How the noncoding RNAs are involved in their regulations has not been comprehensively reviewed. In this chapter, we will list and describe recently published important noncoding RNAs including microRNAs and long noncoding RNAs, which act as effectors and regulators for both p53 and c-Myc regulation. The purpose of this chapter is to provide a recent progress of noncoding RNA in the regulation of p53 and c-Myc on network of cellular signaling and its potential implications in both basic science and clinical application.


Asunto(s)
MicroARNs/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/biosíntesis
14.
J Biol Chem ; 289(14): 10069-83, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24554700

RESUMEN

The plant homeodomain finger 6 (PHF6) was originally identified as the gene mutated in the X-linked mental retardation disorder Börjeson-Forssman-Lehmann syndrome. Mutations in the PHF6 gene have also been associated with T-cell acute lymphoblastic leukemia and acute myeloid leukemia. Approximately half of the disease-associated mutations are distributed in the second conserved extended plant homeodomain (ePHD2) of PHF6, indicating the functional importance of the ePHD2 domain. Here, we report the high resolution crystal structure of the ePHD2 domain of PHF6, which contains an N-terminal pre-PHD (C2HC zinc finger), a long linker, and an atypical PHD finger. PHF6-ePHD2 appears to fold as a novel integrated structural module. Structural analysis of PHF6-ePHD2 reveals pathological implication of PHF6 gene mutations in Börjeson-Forssman-Lehmann syndrome, T-cell acute lymphoblastic leukemia, and acute myeloid leukemia. The binding experiments show that PHF6-ePHD2 can bind dsDNA but not histones. We also demonstrate PHF6 protein directly interacts with the nucleosome remodeling and deacetylation complex component RBBP4. Via this interaction, PHF6 exerts its transcriptional repression activity. Taken together, these data support the hypothesis that PHF6 may function as a transcriptional repressor using its ePHD domains binding to the promoter region of its repressed gene, and this process was regulated by the nucleosome remodeling and deacetylation complex that was recruited to the genomic target site by NoLS region of PHF6.


Asunto(s)
Proteínas Portadoras/química , Pliegue de Proteína , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Mutación , Obesidad/genética , Obesidad/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras , Relación Estructura-Actividad
15.
Stem Cells ; 31(5): 953-65, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23355387

RESUMEN

Increasing evidence suggests that metabolic remodeling plays an important role in the regulation of somatic cell reprogramming. Threonine catabolism mediated by L-threonine dehydrogenase (TDH) has been recognized as a specific metabolic trait of mouse embryonic stem cells. However, it remains unknown whether TDH-mediated threonine catabolism could regulate reprogramming. Here, we report TDH as a novel regulator of somatic cell reprogramming. Knockdown of TDH inhibits, whereas induction of TDH enhances reprogramming efficiency. Moreover, microRNA-9 post-transcriptionally regulates the expression of TDH and thereby inhibits reprogramming efficiency. Furthermore, protein arginine methyltransferase (PRMT5) interacts with TDH and mediates its post-translational arginine methylation. PRMT5 appears to regulate TDH enzyme activity through both methyltransferase-dependent and -independent mechanisms. Functionally, TDH-facilitated reprogramming efficiency is further enhanced by PRMT5. These results suggest that TDH-mediated threonine catabolism controls somatic cell reprogramming and indicate the importance of post-transcriptional and post-translational regulation of TDH.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Reprogramación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre/citología , Treonina/metabolismo , Oxidorreductasas de Alcohol/biosíntesis , Oxidorreductasas de Alcohol/genética , Animales , Arginina/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Metilación , Ratones , MicroARNs/genética , Proteína Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas , Interferencia de ARN , Células Madre/enzimología , Células Madre/metabolismo , Células Madre/fisiología
16.
FEBS J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949993

RESUMEN

Cancer cells undergo metabolic adaptation to promote their survival and growth under energy stress conditions, yet the underlying mechanisms remain largely unclear. Here, we report that tripartite motif-containing protein 2 (TRIM2) is upregulated in response to glutamine deprivation by the transcription factor cyclic AMP-dependent transcription factor (ATF4). TRIM2 is shown to specifically interact with carnitine O-palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation. Via this interaction, TRIM2 enhances the enzymatic activity of CPT1A, thereby regulating intracellular lipid levels and protecting cells from glutamine deprivation-induced apoptosis. Furthermore, TRIM2 is able to promote both in vitro cell proliferation and in vivo xenograft tumor growth via CPT1A. Together, these findings establish TRIM2 as an important regulator of the metabolic adaptation of cancer cells to glutamine deprivation and implicate TRIM2 as a potential therapeutic target for cancer.

17.
Cell Death Dis ; 15(5): 354, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773094

RESUMEN

Cancer cells undergo metabolic reprogramming in response to hostile microenvironments, such as energy stress; however, the underlying mechanisms remain largely unclear. It is also unknown whether energy stress-responsive circular RNA (circRNA) is involved in the regulation of glucose metabolism. Here we report that circDDX21 is upregulated in response to glucose deprivation by the transcription factor c-Myc. Functionally, circDDX21 is shown to promote glycolysis by increasing PGAM1 expression. Mechanistically, circDDX21 interacts with the RNA binding protein PABPC1, disrupting its association with the ubiquitin E3 ligase MKRN3. This disassociation attenuates MKRN3-mediated PABPC1 ubiquitination and enhances the binding of PABPC1 to PGAM1 mRNA, thereby leading to PGAM1 mRNA stabilization. The ability of the circDDX21-PGAM1 axis to promote hepatocellular carcinogenesis is validated in a xenograft mouse model. Additionally, in clinical hepatocellular carcinoma tissues, there is a positive correlation between circDDX21 and PGAM1 expression. These findings establish circDDX21 as an important regulator of glycolysis and suggest circDDX21 as a potential therapeutic target for hepatocellular carcinoma.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Glucólisis , Neoplasias Hepáticas , ARN Circular , Humanos , Glucólisis/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Animales , ARN Circular/genética , ARN Circular/metabolismo , Ratones , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Ratones Desnudos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metabolismo Energético/genética , Ubiquitinación , Masculino , Ratones Endogámicos BALB C
18.
Stem Cells ; 30(7): 1405-13, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22553189

RESUMEN

Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by ectopic expression of defined transcriptional factors. The efficiency of this process, however, is extremely low. Although inactivation of p53 has been recently shown to greatly enhance reprogramming efficiency, the underlying molecular mechanisms still remain largely unknown. Here, we report that miR-199a-3p is upregulated by p53 at the post-transcriptional level. Induction of miR-199a-3p significantly decreases reprogramming efficiency, whereas miR-199a-3p inhibition greatly enhances it. Mechanistically, miR-199a-3p overexpression inhibits cell proliferation by imposing G1 cell cycle arrest. Conversely, miR-199a-3p inhibition results in a pronounced increase in cell proliferation. Furthermore, the enhancement in reprogramming of p53 knockdown cells is almost completely reversed with replacement of miR-199a-3p. Also, miR-199a-3p inhibition partially rescues iPS generation impaired by p53. These findings suggest miR-199a-3p as a novel p53 target that negatively regulates somatic cell reprogramming.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Proteína p53 Supresora de Tumor/genética
19.
Int J Biochem Cell Biol ; 156: 106372, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657708

RESUMEN

The c-Myc oncoprotein plays a pivotal role in tumorigenesis. The deregulated expression of c-Myc has been linked to a variety of human cancers including lung adenocarcinoma. The oncogenic function of c-Myc has been largely attributed to its intrinsic nature as a transcription factor. Here we reported the RNA binding protein hnRNPAB as a direct transcriptional target of c-Myc by performing quantitative real-time polymerase chain reaction (qRT-PCR), western blot, chromatin immunoprecipitation (ChIP), and luciferase reporter analyses. Flow cytometry, colony formation, and RNA immunoprecipitation (RIP) assays were used to investigate the role of hnRNPAB in lung adenocarcinoma cell proliferation, as well as the underlying mechanism. HnRNPAB was functionally shown to promote lung adenocarcinoma cell proliferation by accelerating G1/S cell cycle progression. Mechanistically, hnRNPAB interacted with and stabilized CDK4 mRNA, thereby increasing CDK4 expression. Moreover, hnRNPAB was able to promote G1/S cell cycle progression and cell proliferation via the regulation of CDK4. HnRNPAB was also revealed as a mediator of the promoting effect of c-Myc on cell proliferation. Together, these findings demonstrate that hnRNPAB is an important regulator of lung adenocarcinoma cell proliferation. They also add new insights into the mechanisms of how c-Myc promotes tumorigenesis.


Asunto(s)
Adenocarcinoma del Pulmón , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Neoplasias Pulmonares , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adenocarcinoma del Pulmón/genética , Proliferación Celular/genética , Neoplasias Pulmonares/patología , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
20.
J Genet Genomics ; 50(5): 305-317, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36693565

RESUMEN

Transcription factors (TFs) regulate cellular activities by controlling gene expression, but a predictive model describing how TFs quantitatively modulate human transcriptomes is lacking. We construct a universal human gene expression predictor named EXPLICIT-Human and utilize it to decode transcriptional regulation. Using the expression of 1613 TFs, the predictor reconstitutes highly accurate transcriptomes for samples derived from a wide range of tissues and conditions. The broad applicability of the predictor indicates that it recapitulates the quantitative relationships between TFs and target genes ubiquitous across tissues. Significant interacting TF-target gene pairs are extracted from the predictor and enable downstream inference of TF regulators for diverse pathways involved in development, immunity, metabolism, and stress response. A detailed analysis of the hematopoiesis process reveals an atlas of key TFs regulating the development of different hematopoietic cell lineages, and a portion of these TFs are conserved between humans and mice. The results demonstrate that our method is capable of delineating the TFs responsible for fate determination. Compared to other existing tools, EXPLICIT-Human shows a better performance in recovering the correct TF regulators.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA