Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813528

RESUMEN

Glucocorticoids are used during prostate cancer (PCa) treatment. However, they may also have the potential to drive castration resistant prostate cancer (CRPC) growth via the glucocorticoid receptor (GR). Given the association between inflammation and PCa, and the anti-inflammatory role of heme oxygenase 1 (HO-1), we aimed at identifying the molecular processes governed by the interaction between HO-1 and GR. PCa-derived cell lines were treated with Hemin, Dexamethasone (Dex), or both. We studied GR gene expression by RTqPCR, protein expression by Western Blot, transcriptional activity using reporter assays, and nuclear translocation by confocal microscopy. We also evaluated the expression of HO-1, FKBP51, and FKBP52 by Western Blot. Hemin pre-treatment reduced Dex-induced GR activity in PC3 cells. Protein levels of FKBP51, a cytoplasmic GR-binding immunophilin, were significantly increased in Hemin+Dex treated cells, possibly accounting for lower GR activity. We also evaluated these treatments in vivo using PC3 tumors growing as xenografts. We found non-significant differences in tumor growth among treatments. Immunohistochemistry analyses revealed strong nuclear GR staining in almost all groups. We did not observe HO-1 staining in tumor cells, but high HO-1 reactivity was detected in tumor infiltrating macrophages. Our results suggest an association and crossed modulation between HO-1 and GR pathways.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Línea Celular Tumoral , Dexametasona/farmacología , Supervivencia sin Enfermedad , Hemo-Oxigenasa 1/genética , Hemina/farmacología , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Transducción de Señal , Proteínas de Unión a Tacrolimus/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biochem Cell Biol ; 94(4): 297-305, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27472495

RESUMEN

5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.


Asunto(s)
Acetilcolinesterasa/metabolismo , Ácido Aminolevulínico/farmacología , Antioxidantes/metabolismo , Encéfalo/metabolismo , Hemo/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Masculino , Ratones , Fármacos Fotosensibilizantes/farmacología
3.
Medicina (B Aires) ; 75(1): 1-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25637892

RESUMEN

Concomitant tumor resistance (CR) is a phenomenon in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. While former studies have indicated that T-cell dependent processes mediate CR in hosts bearing immunogenic small tumors, the most universal manifestation of CR induced by immunogenic and non-immunogenic large tumors had been associated with an antitumor serum factor that remained an enigma for many years. In a recent paper, we identified that elusive factor(s) as an equi-molar mixture of meta-tyrosine and ortho-tyrosine, two isomers of tyrosine that are not present in normal proteins and that proved to be responsible for 90% and 10%, respectively, of the total serum anti-tumor activity. In this work, we have extended our previous findings demonstrating that a periodic intravenous administration of meta-tyrosine induced a dramatic reduction of lung and hepatic metastases generated in mice bearing two different metastatic murine tumors and decreased the rate of death from 100% up to 25% in tumor-excised mice that already exhibited established metastases at the time of surgery. These anti-metastatic effects were achieved even at very low concentrations and without displaying any detectable toxic-side effects, suggesting that the use of meta-tyrosine may help to develop new and less harmful means of managing malignant diseases, especially those aimed to control the growth of metastases that is the most serious problem in cancer pathology.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma/patología , Carcinoma/prevención & control , Neoplasias Hepáticas/prevención & control , Neoplasias Pulmonares/prevención & control , Neoplasias Mamarias Experimentales/patología , Tirosina/administración & dosificación , Animales , Antineoplásicos/sangre , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Isomerismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Tirosina/efectos adversos , Tirosina/química
4.
Infect Immun ; 82(9): 3948-57, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25001607

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that produces Shiga toxin (Stx) and causes hemorrhagic colitis. Under some circumstances, Stx produced within the intestinal tract enters the bloodstream, leading to systemic complications that may cause the potentially fatal hemolytic-uremic syndrome. Although retinoids like vitamin A (VA) and retinoic acid (RA) are beneficial to gut integrity and the immune system, the effect of VA supplementation on gastrointestinal infections of different etiologies has been controversial. Thus, the aim of this work was to study the influence of different VA status on the outcome of an EHEC intestinal infection in mice. We report that VA deficiency worsened the intestinal damage during EHEC infection but simultaneously improved survival. Since death is associated mainly with Stx toxicity, Stx was intravenously inoculated to analyze whether retinoid levels affect Stx susceptibility. Interestingly, while VA-deficient (VA-D) mice were resistant to a lethal dose of Stx2, RA-supplemented mice were more susceptible to it. Given that peripheral blood polymorphonuclear cells (PMNs) are known to potentiate Stx2 toxicity, we studied the influence of retinoid levels on the absolute number and function of PMNs. We found that VA-D mice had decreased PMN numbers and a diminished capacity to produce reactive oxygen species, while RA supplementation had the opposite effect. These results are in line with the well-known function of retinoids in maintaining the homeostasis of the gut but support the idea that they have a proinflammatory effect by acting, in part, on the PMN population.


Asunto(s)
Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/metabolismo , Retinoides/metabolismo , Toxina Shiga II/metabolismo , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Vitamina A/metabolismo
5.
Infect Immun ; 82(4): 1491-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24421050

RESUMEN

Hemolytic-uremic syndrome (HUS) is defined as the triad of anemia, thrombocytopenia, and acute kidney injury. Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC), which causes a prodromal hemorrhagic enteritis, remains the most common etiology of the typical or epidemic form of HUS. Because no licensed vaccine or effective therapy is presently available for human use, we recently developed a novel immunogen based on the B subunit of Shiga toxin 2 (Stx2B) and the enzyme lumazine synthase from Brucella spp. (BLS) (BLS-Stx2B). The aim of this study was to analyze maternal immunization with BLS-Stx2B as a possible approach for transferring anti-Stx2 protection to the offspring. BALB/c female mice were immunized with BLS-Stx2B before mating. Both dams and pups presented comparable titers of anti-Stx2B antibodies in sera and fecal extracts. Moreover, pups were totally protected against a lethal dose of systemic Stx2 injection up to 2 to 3 months postpartum. In addition, pups were resistant to an oral challenge with an Stx2-producing EHEC strain at weaning and did not develop any symptomatology associated with Stx2 toxicity. Fostering experiments demonstrated that anti-Stx2B neutralizing IgG antibodies were transmitted through breast-feeding. Pups that survived the EHEC infection due to maternally transferred immunity prolonged an active and specific immune response that protected them against a subsequent challenge with intravenous Stx2. Our study shows that maternal immunization with BLS-Stx2B was very effective at promoting the transfer of specific antibodies, and suggests that preexposure of adult females to this immunogen could protect their offspring during the early phase of life.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Síndrome Hemolítico-Urémico/prevención & control , Inmunidad Materno-Adquirida/inmunología , Inmunización/métodos , Toxina Shiga II/inmunología , Vacunas contra la Shigella/inmunología , Animales , Anticuerpos Antibacterianos/análisis , Brucella/inmunología , Modelos Animales de Enfermedad , Escherichia coli Enterohemorrágica , Femenino , Síndrome Hemolítico-Urémico/microbiología , Ratones , Ratones Endogámicos BALB C , Complejos Multienzimáticos/inmunología , Proteínas Recombinantes de Fusión/inmunología
6.
FASEB J ; 26(5): 1982-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22286690

RESUMEN

Angiotensin II (AngII), the main effector peptide of the renin-angiotensin system (RAS), participates in multiple biological processes, including cell growth, apoptosis, and tissue remodeling. Since AngII activates, in different cell types, signal transducing pathways that are critical for mammary gland postlactational regression, we investigated the role of the RAS during this process. We found that exogenous administration of AngII in mammary glands of lactating Balb/c mice induced epithelium apoptosis [2.9±0.5% (control) vs. 9.6±1.1% (AngII); P < 0.001] and activation of the proapoptotic factor STAT3, an effect inhibited by irbesartan, an AT(1) receptor blocker. Subsequently, we studied the expression kinetics of RAS components during involution. We found that angiotensin-converting enzyme (ACE) mRNA expression peaked 6 h after weaning (5.7-fold; P<0.01), while induction of angiotensinogen and AT(1) and AT(2) receptors expression was detected 96 h after weaning (6.2-, 10-, and 6.2-fold increase, respectively; P<0.01). To assess the role of endogenously generated AngII, mice were treated with losartan, an AT(1) receptor blocker, during mammary involution. Mammary glands from losartan-treated mice showed activation of the survival factors AKT and BCL-(XL), significantly lower LIF and TNF-α mRNA expression (P<0.05), reduced apoptosis [12.1±2.1% (control) vs. 4.8±0.7% (losartan); P<0.001] and shedding of epithelial cells, inhibition of MMP-9 activity in a dose-dependent manner (80%; P<0.05; with losartan IC(50) value of 6.9 mg/kg/d] and lower collagen deposition and adipocyte invasion causing a delayed involution compared to vehicle-treated mice. Furthermore, mammary glands of forced weaned AT(1A)- and/or AT(1B)-deficient mice exhibited retarded apoptosis of epithelial cells [6.3±0.95% (WT) vs. 3.3±0.56% (AT(1A)/AT(1B) DKO); P<0.05] with remarkable delayed postlactational regression compared to wild-type animals. Taken together, these results strongly suggest that AngII, via the AT(1) receptor, plays a major role in mouse mammary gland involution identifying a novel role for the RAS. angiotensin system.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Glándulas Mamarias Animales/efectos de los fármacos , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Etiquetado Corte-Fin in Situ , Lactancia , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/fisiología , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Transducción de Señal
7.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044452

RESUMEN

RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition.


Asunto(s)
Glándulas Mamarias Humanas , Neoplasias , Animales , Femenino , Humanos , Lactancia/fisiología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Ratones , Neoplasias/patología , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
Infect Immun ; 79(3): 1280-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21173307

RESUMEN

Severe sepsis is associated with early release of inflammatory mediators that contribute to the morbidity and mortality observed during the first stages of this syndrome. Although sepsis is a deadly, acute disease, high mortality rates have been observed in patients displaying evidence of sepsis-induced immune deactivation. Although the contribution of experimental models to the knowledge of pathophysiological and therapeutic aspects of human sepsis is undeniable, most of the current studies using animal models have focused on the acute, proinflammatory phase. We developed a murine model that reproduces the early acute phases but also the long-term consequences of human sepsis. We induced polymicrobial acute peritonitis (AP) by establishing a surgical connection between the cecum and the peritoneum, allowing the exit of intestinal bacteria. Using this model, we observed an acute phase with high mortality, leukopenia, increased interleukin-6 levels, bacteremia, and neutrophil activation. A peak of leukocytosis on day 9 or 10 revealed the persistence of the infection within the lung and liver, with inflammatory hepatic damage being shown by histological examination. Long-term (20 days) derangements in both innate and adaptive immune responses were found, as demonstrated by impaired systemic tumor necrosis factor alpha production in response to an inflammatory stimulus; a decreased primary humoral immune response and T cell proliferation, associated with an increased number of myeloid suppressor cells (Gr-1(+) CD11b(+)) in the spleen; and a low clearance capacity. This model provides a good approach to attempt novel therapeutic interventions directed to augmenting host immunity during late sepsis.


Asunto(s)
Modelos Animales de Enfermedad , Peritonitis/complicaciones , Peritonitis/inmunología , Sepsis/etiología , Sepsis/inmunología , Animales , Ciego/microbiología , Ciego/cirugía , Citocinas/inmunología , Inflamación/inmunología , Ratones , Ratones Endogámicos BALB C , Peritoneo/cirugía , Peritonitis/microbiología , Sepsis/microbiología
9.
Biomolecules ; 10(3)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197509

RESUMEN

BACKGROUND: Prostate cancer (PCa) dissemination shows a tendency to develop in the bone, where heme oxygenase 1 (HO-1) plays a critical role in bone remodeling. Previously by LC/ESI-MSMS, we screened for HO-1 interacting proteins and identified annexin 2 (ANXA2). The aim of this study was to analyze the relevance of ANXA2/HO-1 in PCa and bone metastasis. METHODS: We assessed ANXA2 levels using a co-culture transwell system of PC3 cells (pre-treated or not with hemin, an HO-1 specific inducer) and the pre-osteoclastic Raw264.7 cell line. RESULTS: Under co-culture conditions, ANXA2 mRNA levels were significantly modulated in both cell lines. Immunofluorescence analysis unveiled a clear ANXA2 reduction in cell membrane immunostaining for Raw264.7 under the same conditions. This effect was supported by the detection of a decrease in Ca2+ concentration in the conditioned medium. HO-1 induction in tumor cells prevented both, the ANXA2 intracellular relocation and the decrease in Ca2+ concentration. Further, secretome analysis revealed urokinase (uPA) as a key player in the communication between osteoclast progenitors and PC3 cells. To assess the clinical significance of ANXA2/HO-1, we performed a bioinformatics analysis and identified that low expression of each gene strongly associated with poor prognosis in PCa regardless of the clinico-pathological parameters assessed. Further, these genes appear to behave in a dependent manner. CONCLUSIONS: ANXA2/HO-1 rises as a critical axis in PCa.


Asunto(s)
Anexina A2/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Hemo-Oxigenasa 1/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral , Animales , Neoplasias Óseas/patología , Huesos/metabolismo , Huesos/patología , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Células PC-3 , Neoplasias de la Próstata/patología , Células RAW 264.7
10.
Curr Pharm Biotechnol ; 20(12): 1072, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31701844

RESUMEN

Due to some inconsistencies in the figures provided by the first author that have come to light, and after a thorough investigation we would like to retract our paper: "Low doses of CPS49 and flavopiridol combination as potential treatment for advanced prostate cancer. By: Zalazar F, De Luca P, Gardner K, Figg WD, Meiss R, Spallanzani RG, Vallecorsa P, Elguero B, Cotignola J, Vazquez E, De Siervi A. Curr. Pharm. Biotechnol., 2015, 16(6), 553-63. Submission of a manuscript to the respective journals implies that all authors have read and agreed to the content of the Copyright Letter or the Terms and Conditions. As such this article represents a severe abuse of the scientific publishing system. Bentham Science Publishers takes a very strong view on this matter and apologizes to the readers of the journal for any inconvenience this may cause.

11.
Sci Rep ; 8(1): 1513, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367608

RESUMEN

Although platelet-rich plasma (PRP) is used as a source of growth factors in regenerative medicine, its effectiveness remains controversial, partially due to the absence of PRP preparation protocols based on the regenerative role of platelets. Here, we aimed to optimise the protocol by analysing PRP angiogenic and regenerative properties. Three optimising strategies were evaluated: dilution, 4 °C pre-incubation, and plasma cryoprecipitate supplementation. Following coagulation, PRP releasates (PRPr) were used to induce angiogenesis in vitro (HMEC-1 proliferation, migration, and tubule formation) and in vivo (chorioallantoic membrane), as well as regeneration of excisional wounds on mouse skin. Washed platelet releasates induced greater angiogenesis than PRPr due to the anti-angiogenic effect of plasma, which was decreased by diluting PRPr with saline. Angiogenesis was also improved by both PRP pre-incubation at 4 °C and cryoprecipitate supplementation. A combination of optimising variables exerted an additive effect, thereby increasing the angiogenic activity of PRPr from healthy donors and diabetic patients. Optimised PRPr induced faster and more efficient mouse skin wound repair compared to that induced by non-optimised PRPr. Acetylsalicylic acid inhibited angiogenesis and tissue regeneration mediated by PRPr; this inhibition was reversed following optimisation. Our findings indicate that PRP pre-incubation at 4 °C, PRPr dilution, and cryoprecipitate supplementation improve the angiogenic and regenerative properties of PRP compared to the obtained by current methods.


Asunto(s)
Neovascularización Fisiológica/efectos de los fármacos , Plasma Rico en Plaquetas/metabolismo , Tecnología Farmacéutica/métodos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Membrana Corioalantoides/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Voluntarios Sanos , Humanos , Ratones , Codorniz , Cicatrización de Heridas/efectos de los fármacos
12.
Front Oncol ; 8: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29435437

RESUMEN

Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR) evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors), counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.

13.
Oncotarget ; 9(9): 8278-8289, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29492194

RESUMEN

Tristetraprolin (TTP), an mRNA-binding protein that negatively controls levels of inflammatory factors, is highly expressed in the lactating mouse mammary gland. To determine the biological relevance of this expression profile, we developed bi-transgenic mice in which this protein is specifically down-regulated in the secretory mammary epithelium in the secretory mammary epithelium during lactation. Our data show that TTP conditional KO mice produced underweight litters, possibly due to massive mammary cell death induced during lactation without the requirement of additional stimuli. This effect was linked to overexpression of inflammatory cytokines, activation of STAT3 and down-regulation of AKT phosphorylation. Importantly, blocking TNFα activity in the lactating conditional TTP KO mice inhibited cell death and similar effects were observed when this treatment was applied to wild-type animals during 48 h after weaning. Therefore, our results demonstrate that during lactation TTP wards off early involution by preventing the increase of local inflammatory factors. In addition, our data reveal the relevance of locally secreted TNFα for triggering programmed cell death after weaning.

14.
Cancer Res ; 78(16): 4497-4511, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29748375

RESUMEN

R-spondin3 (RSPO3) is a member of a family of secreted proteins that enhance Wnt signaling pathways in diverse processes, including cancer. However, the role of RSPO3 in mammary gland and breast cancer development remains unclear. In this study, we show that RSPO3 is expressed in the basal stem cell-enriched compartment of normal mouse mammary glands but is absent from committed mature luminal cells in which exogenous RSPO3 impairs lactogenic differentiation. RSPO3 knockdown in basal-like mouse mammary tumor cells reduced canonical Wnt signaling, epithelial-to-mesenchymal transition-like features, migration capacity, and tumor formation in vivo Conversely, RSPO3 overexpression, which was associated with some LGR and RUNX factors, highly correlated with the basal-like subtype among patients with breast cancer. Thus, we identified RSPO3 as a novel key modulator of breast cancer development and a potential target for treatment of basal-like breast cancers.Significance: These findings identify RSPO3 as a potential therapetuic target in basal-like breast cancers.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4497/F1.large.jpg Cancer Res; 78(16); 4497-511. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/genética , Mama/metabolismo , Neoplasias Mamarias Animales/genética , Trombospondinas/genética , Animales , Mama/patología , Neoplasias de la Mama/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Animales/patología , Ratones , Receptores Acoplados a Proteínas G/genética , Vía de Señalización Wnt/genética
15.
Cell Death Dis ; 9(2): 140, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396431

RESUMEN

An abrupt increase in metastatic growth as a consequence of the removal of primary tumors suggests that the concomitant resistance (CR) phenomenon might occur in human cancer. CR occurs in murine tumors and ROS-damaged phenylalanine, meta-tyrosine (m-Tyr), was proposed as the serum anti-tumor factor primarily responsible for CR. Herein, we demonstrate for the first time that CR happens in different experimental human solid tumors (prostate, lung anaplastic, and nasopharyngeal carcinoma). Moreover, m-Tyr was detected in the serum of mice bearing prostate cancer (PCa) xenografts. Primary tumor growth was inhibited in animals injected with m-Tyr. Further, the CR phenomenon was reversed when secondary implants were injected into mice with phenylalanine (Phe), a protective amino acid highly present in primary tumors. PCa cells exposed to m-Tyr in vitro showed reduced cell viability, downregulated NFκB/STAT3/Notch axis, and induced autophagy; effects reversed by Phe. Strikingly, m-Tyr administration also impaired both, spontaneous metastasis derived from murine mammary carcinomas (4T1, C7HI, and LMM3) and PCa experimental metastases. Altogether, our findings propose m-Tyr delivery as a novel approach to boost the therapeutic efficacy of the current treatment for metastasis preventing the escape from tumor dormancy.


Asunto(s)
Metástasis de la Neoplasia/patología , Fenilalanina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Resistencia a Antineoplásicos , Humanos , Masculino , Ratones Desnudos , Neoplasias de la Próstata/patología , Suero , Transducción de Señal , Tejido Subcutáneo/patología , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Breast Cancer Res ; 9(5): R69, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17925034

RESUMEN

INTRODUCTION: It has been demonstrated that leukemia inhibitory factor (LIF) induces epithelium apoptosis through Stat3 activation during mouse mammary gland involution. In contrast, it has been shown that this transcription factor is commonly activated in breast cancer cells, although what causes this effect remains unknown. Here we have tested the hypothesis that locally produced LIF can be responsible for Stat3 activation in mouse mammary tumors. METHODS: The studies were performed in different tumorigenic and non-tumorigenic mammary cells. The expression of LIF and LIF receptor was tested by RT-PCR analysis. In tumors, LIF and Stat3 proteins were analyzed by immunohistochemistry, whereas Stat3 and extracellular signal-regulated kinase (ERK)1/2 expression and phosphorylation were studied by Western blot analysis. A LIF-specific blocking antibody was used to determine whether this cytokine was responsible for Stat3 phosphorylation induced by conditioned medium. Specific pharmacological inhibitors (PD98059 and Stat3ip) that affect ERK1/2 and Stat3 activation were used to study their involvement in LIF-induced effects. To analyze cell survival, assays with crystal violet were performed. RESULTS: High levels of LIF expression and activated Stat3 were found in mammary tumors growing in vivo and in their primary cultures. We found a single mouse mammary tumor cell line, LM3, that showed low levels of activated Stat3. Incidentally, these cells also showed very little expression of LIF receptor. This suggested that autocrine/paracrine LIF would be responsible for Stat3 activation in mouse mammary tumors. This hypothesis was confirmed by the ability of conditioned medium of mammary tumor primary cultures to induce Stat3 phosphorylation, activity that was prevented by pretreatment with LIF-blocking antibody. Besides, we found that LIF increased tumor cell viability. Interestingly, blocking Stat3 activation enhanced this effect in mammary tumor cells. CONCLUSION: LIF is overexpressed in mouse mammary tumors, where it acts as the main Stat3 activator. Interestingly, the positive LIF effect on tumor cell viability is not dependent on Stat3 activation, which inhibits tumor cell survival as it does in normal mammary epithelium.


Asunto(s)
Neoplasias Mamarias Experimentales/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Western Blotting , Supervivencia Celular , Femenino , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Tirosina/metabolismo
17.
Oncol Lett ; 13(5): 3225-3232, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28521429

RESUMEN

Despite the classic role of B cells in favoring the immune response, an inhibitory action of B lymphocytes in tumor immunity has emerged in certain studies. In methylcolanthrene-induced murine fibrosarcoma (MCC), the loss of immunogenicity and the establishment of tolerance are paralleled by systemic immune suppression and the appearance of B+IL-10+ cells in tumor-draining lymph nodes. The present study aimed to assess the role of the B+IL-10+ cell population in the immune evasion and tolerance induced by MCC through the depletion of B cells in mice at various times of tumor progression: Prior to or subsequent to tumor implantation. Tumor growth and immunological parameters were evaluated. B cell depletion prior to tumor inoculum enhanced tumor growth, initiating the onset of the tumor-induced systemic immune response; however, an increase in the T regulatory cells (Tregs) at the tumor-draining lymph node could account for tumor exacerbation. B cell depletion once the tumor was established resulted in decreased tumor growth and a delayed onset of tolerance. Additionally, B cell absence exacerbated T cell dependent-tumor rejection, reduced Tregs and increased cytotoxic CD8+ T cells. In vitro analysis showed a direct effect of B cells upon T cell proliferation. In conclusion, B cell depletion exerts opposite effects when performed prior to or subsequent to tumor implantation. In this initially immunogenic tumor, B cell absence would delay the establishment of immunological tolerance probably by unmasking a pre-existing antitumor response. The present findings elucidate the convenience of modulating B cells in the development of future and more effective immunotherapies against cancer.

18.
Clin Cancer Res ; 23(17): 5135-5148, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28512172

RESUMEN

Purpose: Conditioning strategies constitute a relatively unexplored and exciting opportunity to shape tumor fate by targeting the tumor microenvironment. In this study, we assessed how hemin, a pharmacologic inducer of heme oxygenase-1 (HO-1), has an impact on prostate cancer development in an in vivo conditioning model.Experimental Design: The stroma of C57BL/6 mice was conditioned by subcutaneous administration of hemin prior to TRAMP-C1 tumor challenge. Complementary in vitro and in vivo assays were performed to evaluate hemin effect on both angiogenesis and the immune response. To gain clinical insight, we used prostate cancer patient-derived samples in our studies to assess the expression of HO-1 and other relevant genes.Results: Conditioning resulted in increased tumor latency and decreased initial growth rate. Histologic analysis of tumors grown in conditioned mice revealed impaired vascularization. Hemin-treated human umbilical vein endothelial cells (HUVEC) exhibited decreased tubulogenesis in vitro only in the presence of TRAMP-C1-conditioned media. Subcutaneous hemin conditioning hindered tumor-associated neovascularization in an in vivo Matrigel plug assay. In addition, hemin boosted CD8+ T-cell proliferation and degranulation in vitro and antigen-specific cytotoxicity in vivo A significant systemic increase in CD8+ T-cell frequency was observed in preconditioned tumor-bearing mice. Tumors from hemin-conditioned mice showed reduced expression of galectin-1 (Gal-1), key modulator of tumor angiogenesis and immunity, evidencing persistent remodeling of the microenvironment. We also found a subset of prostate cancer patient-derived xenografts and prostate cancer patient samples with mild HO-1 and low Gal-1 expression levels.Conclusions: These results highlight a novel function of a human-used drug as a means of boosting the antitumor response. Clin Cancer Res; 23(17); 5135-48. ©2017 AACR.


Asunto(s)
Galectina 1/genética , Hemo-Oxigenasa 1/genética , Hemina/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/patología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Galectina 1/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/antagonistas & inhibidores , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Masculino , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Shock ; 48(1): 94-103, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27922552

RESUMEN

All-trans-retinoic acid (ATRA) is a derivative of vitamin A with antiproliferative properties. Endotoxin shock and subsequent immunosuppression (IS) by lipopolysaccharide (LPS) stimulates myelopoiesis with expansion of myeloid-derived suppressor cells (MDSC). Since we have previously shown that ATRA reverses the IS state by decreasing functional MDSC, our aim was to investigate if ATRA was able to modulate MDSC generation by regulating myelopoiesis in murine hematopoietic organs. We found that ATRA administration in vivo and in vitro decreased the number of CD34+ precursor cells that were increased in IS mice. When we studied the cellular mechanisms involved, we did not find any differences in apoptosis of CD34+ precursors or in the differentiation of these cells to their mature counterparts. Surprisingly, ATRA decreased precursor proliferation, in vitro and in vivo, as assessed by a reduction in the size and number of colony forming units generated from CD34+ cells and by a decreased incorporation of H-thymidine. Moreover, ATRA administration to IS mice decreased the number of MDSC in the spleen, with a restoration of T lymphocyte proliferation and a restitution of the histological architecture. Our results indicate, for the first time, a new use of ATRA to abolish LPS-induced myelopoiesis, affecting the proliferation of precursor cells, and in consequence, decreasing MDSC generation, having a direct impact on the improvement of immune competence. Administration of ATRA could overcome the immunosuppressive state generated by sepsis that often leads to opportunistic life-threatening infections. Therefore, ATRA could be considered a complementary treatment to enhance immune responses.


Asunto(s)
Antígenos CD34/metabolismo , Lipopolisacáridos/toxicidad , Células Supresoras de Origen Mieloide/efectos de los fármacos , Tretinoina/uso terapéutico , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Masculino , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo
20.
BMC Cancer ; 6: 286, 2006 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17169158

RESUMEN

BACKGROUND: Chronic injury deregulates cellular homeostasis and induces a number of alterations leading to disruption of cellular processes such as cell cycle checkpoints and apoptosis, driving to carcinogenesis. The stress protein heme oxygenase-1 (HO-1) catalyzes heme degradation producing biliverdin, iron and CO. Induction of HO-1 has been suggested to be essential for a controlled cell growth. The aim of this work was to analyze the in vivo homeostatic response (HR) triggered by the withdrawal of a potent carcinogen, p-dimethylaminoazobenzene (DAB), after preneoplastic lesions were observed. We analyzed HO-1 cellular localization and the expression of HO-1, Bcl-2 and cell cycle related proteins under these conditions comparing them to hepatocellular carcinoma (HC). METHODS: The intoxication protocol was designed based on previous studies demonstrating that preneoplastic lesions were evident after 89 days of chemical carcinogen administration. Male CF1 mice (n = 18) were used. HR group received DAB (0.5 % w/w) in the diet for 78 days followed by 11 days of carcinogen deprivation. The HC group received the carcinogen and control animals the standard diet during 89 days. The expression of cell cycle related proteins, of Bcl-2 and of HO-1 were analyzed by western blot. The cellular localization and expression of HO-1 were detected by immnunohistochemistry. RESULTS: Increased expression of cyclin E/CDK2 was observed in HR, thus implicating cyclin E/CDK2 in the liver regenerative process. p21cip1/waf1 and Bcl-2 induction in HC was restituted to basal levels in HR. A similar response profile was found for HO-1 expression levels, showing a lower oxidative status in the carcinogen-deprived liver. The immunohistochemical studies revealed the presence of macrophages surrounding foci of necrosis and nodular lesions in HR indicative of an inflammatory response. Furthermore, regenerative cells displayed changes in type, size and intensity of HO-1 immunostaining. CONCLUSION: These results demonstrate that the regenerative capacity of the liver is still observed in the pre-neoplastic tissue after carcinogen withdrawal suggesting that reversible mechanism/s to compensate necrosis and to restitute homeostasis are involved.


Asunto(s)
Carcinógenos/toxicidad , Proteínas de Ciclo Celular/genética , Ciclo Celular/efectos de los fármacos , Hemo-Oxigenasa 1/genética , p-Dimetilaminoazobenceno/toxicidad , Animales , Carcinógenos/administración & dosificación , Carcinoma Hepatocelular/enzimología , Esquema de Medicación , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Homeostasis , Neoplasias Hepáticas/enzimología , Masculino , Ratones , Ratones Endogámicos , p-Dimetilaminoazobenceno/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA