Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Neuropathol ; 134(6): 851-868, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28762187

RESUMEN

Neuroinflammation contributes substantially to stroke pathophysiology. Cerebral invasion of peripheral leukocytes-particularly T cells-has been shown to be a key event promoting inflammatory tissue damage after stroke. While previous research has focused on the vascular invasion of T cells into the ischemic brain, the choroid plexus (ChP) as an alternative cerebral T-cell invasion route after stroke has not been investigated. We here report specific accumulation of T cells in the peri-infarct cortex and detection of T cells as the predominant population in the ipsilateral ChP in mice as well as in human post-stroke autopsy samples. T-cell migration from the ChP to the peri-infarct cortex was confirmed by in vivo cell tracking of photoactivated T cells. In turn, significantly less T cells invaded the ischemic brain after photothrombotic lesion of the ipsilateral ChP and in a stroke model encompassing ChP ischemia. We detected a gradient of CCR2 ligands as the potential driving force and characterized the neuroanatomical pathway for the intracerebral migration. In summary, our study demonstrates that the ChP is a key invasion route for post-stroke cerebral T-cell invasion and describes a CCR2-ligand gradient between cortex and ChP as the potential driving mechanism for this invasion route.


Asunto(s)
Isquemia Encefálica/fisiopatología , Movimiento Celular/fisiología , Plexo Coroideo/fisiopatología , Accidente Cerebrovascular/fisiopatología , Linfocitos T/fisiología , Anciano , Anciano de 80 o más Años , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Isquemia Encefálica/patología , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Quimiocina CCL2/metabolismo , Plexo Coroideo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/patología , Células Mieloides/fisiología , Accidente Cerebrovascular/patología , Linfocitos T/patología
2.
J Biol Chem ; 288(15): 10792-804, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23430260

RESUMEN

Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.


Asunto(s)
Ácido Glutámico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neuronas/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Línea Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Ácido Glutámico/genética , Ácido Glutámico/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Ratones , Mitocondrias/genética , Mitocondrias/patología , Membranas Mitocondriales/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Potasio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
3.
Circ Res ; 110(5): 727-38, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22207711

RESUMEN

RATIONALE: Stroke is the third most common cause of death in industrialized countries. The main therapeutic target is the ischemic penumbra, potentially salvageable brain tissue that dies within the first few hours after blood flow cessation. Hence, strategies to keep the penumbra alive until reperfusion occurs are needed. OBJECTIVE: To study the effect of inhaled nitric oxide on cerebral vessels and cerebral perfusion under physiological conditions and in different models of cerebral ischemia. METHODS AND RESULTS: This experimental study demonstrates that inhaled nitric oxide (applied in 30% oxygen/70% air mixture) leads to the formation of nitric oxide carriers in blood that distribute throughout the body. This was ascertained by in vivo microscopy in adult mice. Although under normal conditions inhaled nitric oxide does not affect cerebral blood flow, after experimental cerebral ischemia induced by transient middle cerebral artery occlusion it selectively dilates arterioles in the ischemic penumbra, thereby increasing collateral blood flow and significantly reducing ischemic brain damage. This translates into significantly improved neurological outcome. These findings were validated in independent laboratories using two different mouse models of cerebral ischemia and in a clinically relevant large animal model of stroke. CONCLUSIONS: Inhaled nitric oxide thus may provide a completely novel strategy to improve penumbral blood flow and neuronal survival in stroke or other ischemic conditions.


Asunto(s)
Arteriolas/fisiología , Isquemia Encefálica/prevención & control , Circulación Colateral/fisiología , Óxido Nítrico/uso terapéutico , Accidente Cerebrovascular/prevención & control , Vasodilatación/fisiología , Administración por Inhalación , Animales , Arteriolas/efectos de los fármacos , Encéfalo/irrigación sanguínea , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Circulación Colateral/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuronas/patología , Óxido Nítrico/administración & dosificación , Óxido Nítrico/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Ovinos , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Vasodilatación/efectos de los fármacos
4.
Anal Biochem ; 443(1): 66-74, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23969012

RESUMEN

Mitochondrial dysfunctions decisively contribute to the progression of human diseases, implying that functional tests of isolated mitochondria may furnish conclusive information for diagnosis and therapy. Classical mitochondrial isolation methods, however, lack precisely adjustable settings for cell rupture, which is the most critical step in this procedure, and this complicates subsequent analyses. Here, we present an efficient method to isolate functionally active, intact mitochondria from cultured or primary cells and minute tissue samples in a rapid, highly reproducible manner.


Asunto(s)
Hepatocitos/ultraestructura , Mitocondrias Hepáticas/ultraestructura , Neuronas/ultraestructura , Animales , Automatización de Laboratorios , Biomarcadores/metabolismo , Fraccionamiento Celular , Línea Celular Tumoral , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Neuronas/metabolismo , Cultivo Primario de Células , Ratas , Ratas Endogámicas BUF , Ratas Endogámicas WKY
5.
J Neurotrauma ; 33(8): 713-20, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26426744

RESUMEN

MicroRNAs (miRNAs) were recently identified as important regulators of gene expression under a wide range of physiological and pathophysiological conditions. Thus, they may represent a novel class of molecular targets for the management of traumatic brain injury (TBI). In this study, we investigated the temporal profile of miRNA expression during the development of secondary brain damage after experimental TBI. For this purpose, we used a controlled cortical impact model in C57Bl/6 mice (n = 6) to induce a cortical contusion and analyzed miRNA expression in the traumatized cortex by microarray analysis during the development of secondary contusion expansion-i.e., at 1, 6, and 12 h after TBI. Of a total 780 mature miRNA sequences analyzed, 410 were detected in all experimental groups. Of these, 158 miRNAs were significantly upregulated or downregulated in TBI compared with sham-operated animals, and 52 miRNAs increased more than twofold. We validated the upregulation of five of the most differentially expressed miRNAs (miR-21*, miR-144, miR-184, miR-451, miR-2137) and the downregulation of four of the most differentially expressed miRNAs (miR-107, miR-137, miR-190, miR-541) by quantitative polymerase chain reaction (qPCR). miR-2137, the most differentially expressed miRNA after TBI, was further investigated by in situ hybridization and was found to be upregulated in neurons within the traumatic penumbra. This study gives a comprehensive picture of miRNA expression levels during secondary contusion expansion after TBI and may pave the way for the identification of novel targets for the management of brain trauma.


Asunto(s)
Contusión Encefálica/genética , Contusión Encefálica/metabolismo , MicroARNs/biosíntesis , MicroARNs/genética , Lóbulo Parietal/metabolismo , Animales , Contusión Encefálica/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Lóbulo Parietal/patología , Factores de Tiempo
6.
Transl Oncol ; 6(1): 1-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23418611

RESUMEN

Resistance formation is one of the major hurdles in cancer therapy. Metronomic anti-angiogenic treatment of xenografted prostate cancer tumors in severe combined-immunodeficiency (SCID) mice with cyclophosphamide (CPA) results in the appearance of resistant tumors. To investigate the complex molecular changes occurring during resistance formation, we performed a comprehensive gene expression analysis of the resistant tumors in vivo. We observed a multitude of differentially expressed genes, e.g., PAS domain containing protein 1, annexin A3 (ANXA3), neurotensin, or plasminogen activator tissue (PLAT), when comparing resistant to in vivo passaged tumor samples. Furthermore, tumor cells from in vivo and in vitro conditions showed a significant difference in target gene expression. We assigned the differentially expressed genes to functional pathways like axon guidance, steroid biosynthesis, and complement and coagulation cascades. Most of these genes were involved in anti-coagulation. Up-regulation of anticoagulatory ANXA3 and PLAT and down-regulation of PLAT inhibitor serpin peptidase inhibitor clade A were validated by quantitative real-time polymerase chain reaction. In contrast, coagulation factor F3 was upregulated, accompanied by the expression of an altered gene product. These findings give insights into the resistance mechanisms of metronomic CPA treatment, suggesting an important role of anti-coagulation in resistance formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA