RESUMEN
The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.
Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Animales , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Transducción de Señal , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Mamíferos/metabolismoRESUMEN
A polyubiquitin chain can adopt a variety of shapes, depending on how the ubiquitin monomers are joined. However, the relevance of linkage for the signaling functions of polyubiquitin chains is often poorly understood because of our inability to control or manipulate this parameter in vivo. Here, we present a strategy for reprogramming polyubiquitin chain linkage by means of tailor-made, linkage- and substrate-selective ubiquitin ligases. Using the polyubiquitylation of the budding yeast replication factor PCNA in response to DNA damage as a model case, we show that altering the features of a polyubiquitin chain in vivo can change the fate of the modified substrate. We also provide evidence for redundancy between distinct but structurally similar linkages, and we demonstrate by proof-of-principle experiments that the method can be generalized to targets beyond PCNA. Our study illustrates a promising approach toward the in vivo analysis of polyubiquitin signaling.
Asunto(s)
Poliubiquitina , Ubiquitina-Proteína Ligasas , ADN , Daño del ADN , Poliubiquitina/genética , Antígeno Nuclear de Célula en Proliferación/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits.
Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/genética , Complejo del Señalosoma COP9/genética , Catálisis , Núcleo Celular , Cromatografía de Afinidad , Ubiquitina-Proteína LigasasRESUMEN
Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.
Asunto(s)
Aspergillus nidulans , Proteínas F-Box , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Metiltransferasas/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismoRESUMEN
Ubiquitin and its relatives are major players in many biological pathways, and a variety of experimental tools based on biological chemistry or protein engineering is available for their manipulation. One popular approach is the use of linear fusions between the modifier and a protein of interest. Such artificial constructs can facilitate the understanding of the role of ubiquitin in biological processes and can be exploited to control protein stability, interactions and degradation. Here we summarize the basic design considerations and discuss the advantages as well as limitations associated with their use. Finally, we will refer to several published case studies highlighting the principles of how they provide insight into pathways ranging from membrane protein trafficking to the control of epigenetic modifications.
Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Ubiquitina , Humanos , Estabilidad Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina/genética , Epigénesis GenéticaRESUMEN
The eight-subunit COP9 signalosome (CSN) is conserved from filamentous fungi to humans and functions at the interface between cellular signalling and protein half-life control. CSN consists of six PCI and two MPN domain proteins and forms a scaffold for additional interacting proteins. CSN controls protein stability in the ubiquitin-proteasome system where the MPN domain CSN5/CsnE subunit inactivates cullin-RING ligases. The CSN5/CsnE isopeptidase functions as deneddylase and removes the ubiquitin-like protein Nedd8. The six PCI domain proteins of human CSN form a horseshoe-like ring and all eight subunits are connected by a bundle of C-terminal α-helices. We show that single deletions of any csn subunit of Aspergillus nidulans resulted in the lack of deneddylase activity and identical defects in the coordination of development and secondary metabolism. The CSN1/CsnA N-terminus is dispensable for deneddylase activity but required for asexual spore formation. Complex analyses in mutant strains revealed the presence of a seven-subunit pre-CSN without catalytic activity. Reconstitution experiments with crude extracts of deletion strains and recombinant proteins allowed the integration of CSN5/CsnE into pre-CSN resulting in an active deneddylase. This supports a stable seven subunit pre-CSN intermediate where deneddylase activation in vivo can be controlled by CSN5/CsnE integration as final assembly step.
Asunto(s)
Aspergillus nidulans/enzimología , Dominio Catalítico , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Complejo del Señalosoma COP9 , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Péptido Hidrolasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Esporas Fúngicas/metabolismoRESUMEN
The COP9 signalosome (CSN) and the proteasomal LID are conserved macromolecular complexes composed of at least eight subunits with molecular weights of approximately 350 kDa. CSN and LID are part of the ubiquitinproteasome pathway and cleave isopeptide linkages of lysine side chains on target proteins. CSN cleaves the isopeptide bond of ubiquitin-like protein Nedd8 from cullins, whereas the LID cleaves ubiquitin from target proteins sentenced for degradation. CSN and LID are structurally and functionally similar but the order of the assembly pathway seems to be different. The assembly differs in at least the last subunit joining the pre-assembled subcomplex. This review addresses the similarities and differences in structure, function and assembly of CSN and LID.
Asunto(s)
Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Complejo del Señalosoma COP9 , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismoRESUMEN
COP9 signalosome (CSN) and Den1/A deneddylases physically interact and promote multicellular development in fungi. CSN recognizes Skp1/cullin-1/Fbx E3 cullin-RING ligases (CRLs) without substrate and removes their posttranslational Nedd8 modification from the cullin scaffold. This results in CRL complex disassembly and allows Skp1 adaptor/Fbx receptor exchange for altered substrate specificity. We characterized the novel ubiquitin-specific protease UspA of the mold Aspergillusnidulans, which corresponds to CSN-associated human Usp15 and interacts with six CSN subunits. UspA reduces amounts of ubiquitinated proteins during fungal development, and the uspA gene expression is repressed by an intact CSN. UspA is localized in proximity to nuclei and recruits proteins related to nuclear transport and transcriptional processing, suggesting functions in nuclear entry control. UspA accelerates the formation of asexual conidiospores, sexual development, and supports the repression of secondary metabolite clusters as the derivative of benzaldehyde (dba) genes. UspA reduces protein levels of the fungal NF-kappa B-like velvet domain protein VeA, which coordinates differentiation and secondary metabolism. VeA stability depends on the Fbx23 receptor, which is required for light controlled development. Our data suggest that the interplay between CSN deneddylase, UspA deubiquitinase, and SCF-Fbx23 ensures accurate levels of VeA to support fungal development and an appropriate secondary metabolism.
Asunto(s)
Aspergillus nidulans/citología , Aspergillus nidulans/enzimología , Complejo del Señalosoma COP9/metabolismo , Proteínas Fúngicas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Transporte Activo de Núcleo Celular , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Núcleo Celular/metabolismo , Unión Proteica , Transcripción GenéticaRESUMEN
E3 cullin-RING ubiquitin ligase (CRL) complexes recognize specific substrates and are activated by covalent modification with ubiquitin-like Nedd8. Deneddylation inactivates CRLs and allows Cand1/A to bind and exchange substrate recognition subunits. Human as well as most fungi possess a single gene for the receptor exchange factor Cand1, which is split and rearranged in aspergilli into two genes for separate proteins. Aspergillus nidulans CandA-N blocks the neddylation site, and CandA-C inhibits the interaction to the adaptor/substrate receptor subunits similar to the respective N-terminal and C-terminal parts of single Cand1. The pathogen Aspergillus fumigatus and related species express a CandA-C with a 190-amino-acid N-terminal extension domain encoded by an additional exon. This extension corresponds in most aspergilli, including A. nidulans, to a gene directly upstream of candA-C encoding a 20-kDa protein without human counterpart. This protein was named CandA-C1, because it is also required for the cellular deneddylation/neddylation cycle and can form a trimeric nuclear complex with CandA-C and CandA-N. CandA-C and CandA-N are required for asexual and sexual development and control a distinct secondary metabolism. CandA-C1 and the corresponding domain of A. fumigatus control spore germination, vegetative growth, and the repression of additional secondary metabolites. This suggests that the dissection of the conserved Cand1-encoding gene within the genome of aspergilli was possible because it allowed the integration of a fungus-specific protein required for growth into the CandA complex in two different gene set versions, which might provide an advantage in evolution.IMPORTANCEAspergillus species are important for biotechnological applications, like the production of citric acid or antibacterial agents. Aspergilli can cause food contamination or invasive aspergillosis to immunocompromised humans or animals. Specific treatment is difficult due to limited drug targets and emerging resistances. The CandA complex regulates, as a receptor exchange factor, the activity and substrate variability of the ubiquitin labeling machinery for 26S proteasome-mediated protein degradation. Only Aspergillus species encode at least two proteins that form a CandA complex. This study shows that Aspergillus species had to integrate a third component into the CandA receptor exchange factor complex that is unique to aspergilli and required for vegetative growth, sexual reproduction, and activation of the ubiquitin labeling machinery. These features have interesting implications for the evolution of protein complexes and could make CandA-C1 an interesting candidate for target-specific drug design to control fungal growth without affecting the human ubiquitin-proteasome system.