Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34960512

RESUMEN

With the continued development and rapid growth of wearable technologies, PPG has become increasingly common in everyday consumer devices such as smartphones and watches. There is, however, minimal knowledge on the effect of the contact pressure exerted by the sensor device on the PPG signal and how it might affect its morphology and the parameters being calculated. This study explores a controlled in vitro study to investigate the effect of continually applied contact pressure on PPG signals (signal-to-noise ratio (SNR) and 17 morphological PPG features) from an artificial tissue-vessel phantom across a range of simulated blood pressure values. This experiment confirmed that for reflectance PPG signal measurements for a given anatomical model, there exists an optimum sensor contact pressure (between 35.1 mmHg and 48.1 mmHg). Statistical analysis shows that temporal morphological features are less affected by contact pressure, lending credit to the hypothesis that for some physiological parameters, such as heart rate and respiration rate, the contact pressure of the sensor is of little significance, whereas the amplitude and geometric features can show significant change, and care must be taken when using morphological analysis for parameters such as SpO2 and assessing autonomic responses.


Asunto(s)
Fotopletismografía , Dispositivos Electrónicos Vestibles , Frecuencia Cardíaca , Saturación de Oxígeno , Fantasmas de Imagen
2.
J Biomed Opt ; 29(1): 017001, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38188965

RESUMEN

Significance: The study of sublingual microcirculation offers valuable insights into vascular changes and overcomes some limitations of peripheral microcirculation assessment. Videomicroscopy and pulse oximetry have been used to assess microcirculation, providing insights into organ perfusion beyond macrohemodynamics parameters. However, both techniques have important limitations that preclude their use in clinical practice. Aim: To address this, we propose a non-invasive approach using photoplethysmography (PPG) to assess microcirculation. Approach: Two experiments were performed on different samples of 31 subjects. First, multi-wavelength, finger PPG signals were compared before and while applying pressure on the sensor to determine if PPG signals could detect changes in peripheral microcirculation. For the second experiment, PPG signals were acquired from the ventral region of the tongue, aiming to assess the microcirculation through features calculated from the PPG signal and its first derivative. Results: In experiment 1, 13 out of 15 features extracted from green PPG signals showed significant differences (p<0.05) before and while pressure was applied to the sensor, suggesting that green light could detect flow distortion in superficial capillaries. In experiment 2, 15 features showed potential application of PPG signal for sublingual microcirculation assessment. Conclusions: The PPG signal and its first derivative have the potential to effectively assess microcirculation when measured from the fingertip and the tongue. The assessment of sublingual microcirculation was done through the extraction of 15 features from the green PPG signal and its first derivative. Future studies are needed to standardize and gain a deeper understanding of the evaluated features.


Asunto(s)
Luz Verde , Suelo de la Boca , Humanos , Valores de Referencia , Microcirculación , Fotopletismografía
3.
Front Physiol ; 14: 1208010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614754

RESUMEN

Objective: This research aims to evaluate the possible association between pulsatile near infrared spectroscopic waveform features and induced changes in intracranial pressure in healthy volunteers. Methods: An optical intracranial pressure sensor was attached to the forehead of 16 healthy volunteers. Pulsatile near infrared spectroscopic signals were acquired from the forehead during body position changes and Valsalva manoeuvers. Features were extracted from the pulsatile signals and analyses were carried out to investigate the presence of statistical differences in the features when intracranial pressure changes were induced. Classification models were developed utilizing the features extracted from the pulsatile near-infrared spectroscopic signals to classify between different body positions and Valsalva manoeuvre. Results: The presence of significant differences in the majority of the analyzed features (p < 0.05) indicates the technique's ability to distinguish between variations in intracranial pressure. Furthermore, the disparities observed in the optical signal features captured by the proximal and distal photodetectors support the hypothesis that alterations in back-scattered light directly correspond to brain-related changes. Further research is required to subtract distal and proximal signals and construct predictive models employing a gold standard measurement for non-invasive, continuous monitoring of intracranial pressure. Conclusion: The study investigated the use of pulsatile near infrared spectroscopic signals to detect changes in intracranial pressure in healthy volunteers. The results revealed significant differences in the features extracted from these signals, demonstrating a correlation with ICP changes induced by positional changes and Valsalva manoeuvre. Classification models were capable of identifying changes in ICP using features from optical signals from the brain, with a sensitivity ranging from 63.07% to 80% and specificity ranging from 60.23% to 70% respectively. These findings underscored the potential of these features to effectively identify alterations in ICP. Significance: The study's results demonstrate the feasibility of using features extracted from optical signals from the brain to detect changes in ICP induced by positional changes and Valsalva manoeuvre in healthy volunteers. This represents a first step towards the non-invasive monitoring of intracranial pressure.

4.
Physiol Meas ; 44(11)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494945

RESUMEN

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Asunto(s)
Fotopletismografía , Dispositivos Electrónicos Vestibles , Monitores de Ejercicio , Procesamiento de Señales Asistido por Computador , Frecuencia Cardíaca/fisiología
5.
Comput Methods Programs Biomed ; 218: 106724, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35255373

RESUMEN

OBJECTIVE: Pulse Rate Variability (PRV) has been widely used as a surrogate of Heart Rate Variability (HRV). However, there are several technical aspects that may affect the extraction of PRV information from pulse wave signals such as the photoplethysmogram (PPG). The aim of this study was to evaluate the effects of changing the algorithm and fiducial points used for determining inter-beat intervals (IBIs), as well as the PPG sampling rate, from simulated PPG signals with known PRV content. METHODS: PPG signals were simulated using a proposed model, in which PRV information can be modelled. Two independent experiments were performed. First, 5 IBIs detection algorithms and 8 fiducial points were used for assessing PRV information from the simulated PPG signals, and time-domain and Poincaré plot indices were extracted and compared to the expected values according to the simulated PRV. The best combination of algorithms and fiducial points were determined for each index, using factorial designs. Then, using one of the best combinations, PPG signals were simulated with varying sampling rates. PRV indices were extracted and compared to the expected values using Student t-tests or Mann-Whitney U-tests. RESULTS: From the first experiment, it was observed that AVNN and SD2 indices behaved similarly, and there was no significant influence of the fiducial points used. For other indices, there were several combinations that behaved similarly well, mostly based on the detection of the valleys of the PPG signal. There were differences according to the quality of the PPG signal. From the second experiment, it was observed that, for all indices but SDNN, the higher the sampling rate the better. AVNN and SD2 showed no statistical differences even at the lowest evaluated sampling rate (32 Hz), while RMSSD, pNN50, S, SD1 and SD1/SD2 showed good performance at sampling rates as low as 128 Hz. CONCLUSION: The best combination of IBIs detection algorithms and fiducial points differs according to the application, but those based on the detection of the valleys of the PPG signal tend to show a better performance. The sampling rate of PPG signals for PRV analysis could be lowered to around 128 Hz, although it could be further lowered according to the application. SIGNIFICANCE: The standardisation of PRV analysis could increase the reliability of this signal and allow for the comparison of results obtained from different studies. The obtained results allow for a first approach to establish guidelines for two important aspects in PRV analysis from PPG signals, i.e. the way the IBIs are segmented from PPG signals, and the sampling rate that should be used for these analyses. Moreover, a model for simulating PPG signals with PRV information has been proposed, which allows for the establishing of these guidelines while controlling for other variables, such as the quality of the PPG signal.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Algoritmos , Electrocardiografía/métodos , Frecuencia Cardíaca/fisiología , Humanos , Fotopletismografía/métodos , Reproducibilidad de los Resultados , Sindactilia
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 649-652, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086146

RESUMEN

Pulse rate variability (PRV) has been proposed as a surrogate for the estimation of Heart Rate Variability (HRV), which is a non-invasive technique used to assess the cardiac autonomic activity. However, both physiological and technical factors may affect the relationship between HRV and PRV, and there are no standards for the analysis of PRV from photoplethysmographic (PPG) signals. The aim of this study was to determine the best outlier management strategies for PRV analysis. 117 PPG signals with randomly generated PRV information were simulated using Gaussian signals. From these, interbeat intervals were detected and different outlier detection and correction techniques were applied. Time and frequency-domain and non-linear PRV indices were extracted and compared with respect to the gold standard values obtained from the simulated PRV information. The results show that, in good quality PPG signals, there is no need to apply any outlier management technique for the extraction of PRV information. Clinical relevance- Establishing guidelines for PRV mea-surement can lead to more reliable and comparable results, as well as to the increase in the use of this variable for the diagnosis and monitoring of cardiovascular and autonomic conditions.


Asunto(s)
Sistema Nervioso Autónomo , Fotopletismografía , Sistema Nervioso Autónomo/fisiología , Corazón , Frecuencia Cardíaca/fisiología , Distribución Normal , Fotopletismografía/métodos
7.
Front Physiol ; 13: 966130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569750

RESUMEN

Introduction: Pulse rate variability (PRV) refers to the changes in pulse rate through time and is extracted from pulsatile signals such as the photoplethysmogram (PPG). Although PRV has been used as a surrogate of heart rate variability (HRV), which is measured from the electrocardiogram (ECG), these variables have been shown to have differences, and it has been hypothesised that these differences may arise from technical aspects that may affect the reliable extraction of PRV from PPG signals. Moreover, there are no guidelines for the extraction of PRV information from pulsatile signals. Aim: In this study, the extraction of frequency-domain information from PRV was studied, in order to establish the best performing combination of parameters and algorithms to obtain the spectral representation of PRV. Methods: PPG signals with varying and known PRV content were simulated, and PRV information was extracted from these signals. Several spectral analysis techniques with different parameters were applied, and absolute, relative and centroid-related frequency-domain indices extracted from each combination. Indices from extracted and known PRV were compared using factorial analyses and Kruskal-Wallis tests to determine which spectral analysis technique gave the best performing results. Results: It was found that using fast Fourier transform and the multiple signal classification (PMUSIC) algorithms gave the best results, combined with cubic spline interpolation and a frequency resolution of 0.0078 Hz for the former; and a linear interpolation with a frequency resolution as low as 1.22 × 10-4, as well as applying a fifth order model, for the latter. Discussion: Considering the lower complexity of FFT over PMUSIC, FFT should be considered as the appropriate technique to extract frequency-domain information from PRV signals.

8.
Physiol Meas ; 43(8)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853440

RESUMEN

The photoplethysmogram (PPG) signal is widely used in pulse oximeters and smartwatches. A fundamental step in analysing the PPG is the detection of heartbeats. Several PPG beat detection algorithms have been proposed, although it is not clear which performs best.Objective:This study aimed to: (i) develop a framework with which to design and test PPG beat detectors; (ii) assess the performance of PPG beat detectors in different use cases; and (iii) investigate how their performance is affected by patient demographics and physiology.Approach:Fifteen beat detectors were assessed against electrocardiogram-derived heartbeats using data from eight datasets. Performance was assessed using theF1score, which combines sensitivity and positive predictive value.Main results:Eight beat detectors performed well in the absence of movement withF1scores of ≥90% on hospital data and wearable data collected at rest. Their performance was poorer during exercise withF1scores of 55%-91%; poorer in neonates than adults withF1scores of 84%-96% in neonates compared to 98%-99% in adults; and poorer in atrial fibrillation (AF) withF1scores of 92%-97% in AF compared to 99%-100% in normal sinus rhythm.Significance:Two PPG beat detectors denoted 'MSPTD' and 'qppg' performed best, with complementary performance characteristics. This evidence can be used to inform the choice of PPG beat detector algorithm. The algorithms, datasets, and assessment framework are freely available.


Asunto(s)
Fibrilación Atrial , Fotopletismografía , Adulto , Algoritmos , Fibrilación Atrial/diagnóstico , Benchmarking , Electrocardiografía , Frecuencia Cardíaca , Humanos , Recién Nacido
9.
Comput Methods Programs Biomed ; 208: 106222, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34166851

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the capability of features extracted from photoplethysmography (PPG) based Pulse Rate Variability (PRV) to classify hypertensive, normotensive and hypotensive events, and to estimate mean arterial, systolic and diastolic blood pressure in critically ill patients. METHODS: Time-domain, frequency-domain and non-linear indices from PRV were extracted from 5-min and 1-min segments obtained from PPG signals. These features were filtered using machine learning algorithms in order to obtain the optimal combination for the classification of hypertensive, hypotensive and normotensive events, and for the estimation of blood pressure. RESULTS: 5-min segments allowed for an improved performance in both classification and estimation tasks. Classification of blood pressure states showed around 70% accuracy and around 75% specificity. The sensitivity, precision and F1 scores were around 50%. In estimating mean arterial, systolic, and diastolic blood pressure, mean absolute errors as low as 2.55 ± 0.78 mmHg, 4.74 ± 2.33 mmHg, and 1.78 ± 0.14 mmHg were obtained, respectively. Bland-Altman analysis and Wilcoxon rank sum tests showed good agreement between real and estimated values, especially for mean and diastolic arterial blood pressures. CONCLUSION: PRV-based features could be used for the classification of blood pressure states and the estimation of blood pressure values, although including additional features from the PPG waveform could improve the results. SIGNIFICANCE: PRV contains information related to blood pressure, which may aid in the continuous, noninvasive, non-intrusive estimation of blood pressure and detection of hypertensive and hypotensive events in critically ill subjects.


Asunto(s)
Enfermedad Crítica , Fotopletismografía , Presión Sanguínea , Determinación de la Presión Sanguínea , Humanos , Aprendizaje Automático
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5500-5503, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892370

RESUMEN

Due to the widespread use and simplicity of photoplethysmography (PPG) signals, and because this signal contains information related to pulse rate, several studies have started to propose the use of Pulse Rate Variability (PRV) for the assessment of cardiovascular autonomic nervous activity, instead of using Heart Rate Variability (HRV) obtained with the electrocardiogram (ECG). However, there is a lack of standardisation and guidelines for the measurement of PRV from PPG signals, which might hinder comparability among studies and validation of results. The aim of this study was to evaluate different digital filters on PPG signals and their effects on PRV information, compared to HRV obtained from ECG. PPG and ECG signals obtained from healthy volunteers were used to measure HRV and PRV. PPG signals were filtered using different FIR and IIR digital filters, with several cut-off frequencies. The results indicate that filtering PPG signals using IIR filters and lower low-cut-off frequencies allow for the acquisition of more reliable PRV information, with lower Bland-Altman ratios and higher cross-correlations when compared to HRV. This is a first step in establishing guidelines and standards for the analysis of PRV information using PPG signals.Clinical relevance- Pulse rate variability might be a useful tool for the assessment of the cardiovascular autonomic nervous system. This study is the first step for establishing standards of measurement of this signal, which helps in the comparability and validation of the technique.


Asunto(s)
Electrocardiografía , Fotopletismografía , Sistema Nervioso Autónomo , Voluntarios Sanos , Frecuencia Cardíaca , Humanos
11.
NPJ Digit Med ; 4(1): 82, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990692

RESUMEN

Heart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland-Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal-Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2618-2621, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018543

RESUMEN

Heart rate variability (HRV) is a noninvasive marker of cardiac autonomic activity and has been used in different circumstances to assess the autonomic responses of the body. Pulse rate variability (PRV), a similar variable obtained from pulse waves, has been used in recent years as a valid surrogate of HRV. However, the effect that localized changes in autonomic activity have in the relationship between HRV and PRV has not been entirely understood. In this study, a whole-body cold exposure protocol was performed to generate localized changes in autonomic activity, and HRV and PRV from different body sites were obtained. PRV measured from the earlobe and the finger was shown to differ from HRV, and the correlation between these variables was affected by the cold. Also, it was found that PRV from the finger was more affected by cold exposure than PRV from the earlobe. In conclusion, PRV is affected differently to HRV when localized changes in autonomic activity occur. Hence, PRV should not be considered as a valid surrogate of HRV under certain circumstances.Clinical Relevance- This indicates that pulse rate variability is affected differently to heart rate variability when autonomic activity is modified and suggests that pulse rate variability is not always a valid surrogate of heart rate variability.


Asunto(s)
Electrocardiografía , Fotopletismografía , Sistema Nervioso Autónomo , Dedos , Frecuencia Cardíaca
13.
Front Physiol ; 11: 779, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792970

RESUMEN

Introduction: Heart Rate Variability (HRV) and Pulse Rate Variability (PRV), are non-invasive techniques for monitoring changes in the cardiac cycle. Both techniques have been used for assessing the autonomic activity. Although highly correlated in healthy subjects, differences in HRV and PRV have been observed under various physiological conditions. The reasons for their disparities in assessing the degree of autonomic activity remains unknown. Methods: To investigate the differences between HRV and PRV, a whole-body cold exposure (CE) study was conducted on 20 healthy volunteers (11 male and 9 female, 30.3 ± 10.4 years old), where PRV indices were measured from red photoplethysmography signals acquired from central (ear canal, ear lobe) and peripheral sites (finger and toe), and HRV indices from the ECG signal. PRV and HRV indices were used to assess the effects of CE upon the autonomic control in peripheral and core vasculature, and on the relationship between HRV and PRV. The hypotheses underlying the experiment were that PRV from central vasculature is less affected by CE than PRV from the peripheries, and that PRV from peripheral and central vasculature differ with HRV to a different extent, especially during CE. Results: Most of the PRV time-domain and Poincaré plot indices increased during cold exposure. Frequency-domain parameters also showed differences except for relative-power frequency-domain parameters, which remained unchanged. HRV-derived parameters showed a similar behavior but were less affected than PRV. When PRV and HRV parameters were compared, time-domain, absolute-power frequency-domain, and non-linear indices showed differences among stages from most of the locations. Bland-Altman analysis showed that the relationship between HRV and PRV was affected by CE, and that it recovered faster in the core vasculature after CE. Conclusion: PRV responds to cold exposure differently to HRV, especially in peripheral sites such as the finger and the toe, and may have different information not available in HRV due to its non-localized nature. Hence, multi-site PRV shows promise for assessing the autonomic activity on different body locations and under different circumstances, which could allow for further understanding of the localized responses of the autonomic nervous system.

14.
Physiol Meas ; 41(7): 07TR01, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32498055

RESUMEN

Heart rate variability has been largely used for the assessment of cardiac autonomic activity, due to the direct relationship between cardiac rhythm and the activity of the sympathetic and parasympathetic nervous system. In recent years, another technique, pulse rate variability, has been used for assessing heart rate variability information from pulse wave signals, especially from photoplethysmography, a non-invasive, non-intrusive, optical technique that measures the blood volume in tissue. The relationship, however, between pulse rate variability and heart rate variability is not entirely understood, and the effects of cardiovascular changes in pulse rate variability have not been thoroughly elucidated. In this review, a comprehensive summary of the applications in which pulse rate variability has been used, with a special focus on cardiovascular health, and of the studies that have compared heart rate variability and pulse rate variability is presented. It was found that the relationship between heart rate variability and pulse rate variability is not entirely understood yet, and that pulse rate variability might be influenced not only due to technical aspects but also by physiological factors that might affect the measurements obtained from pulse-to-pulse time series extracted from pulse waves. Hence, pulse rate variability must not be considered as a valid surrogate of heart rate variability in all scenarios, and care must be taken when using pulse rate variability instead of heart rate variability. Specifically, the way pulse rate variability is affected by cardiovascular changes does not necessarily reflect the same information as heart rate variability, and might contain further valuable information. More research regarding the relationship between cardiovascular changes and pulse rate variability should be performed to evaluate if pulse rate variability might be useful for the assessment of not only cardiac autonomic activity but also for the analysis of mechanical and vascular autonomic responses to these changes.


Asunto(s)
Sistema Cardiovascular , Frecuencia Cardíaca , Fotopletismografía , Sistema Nervioso Autónomo , Humanos , Sistema Nervioso Parasimpático
15.
Psychophysiology ; 55(6): e13046, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29215144

RESUMEN

Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Frecuencia Cardíaca/fisiología , Respiración , Estrés Psicológico/fisiopatología , Adulto , Ejercicios Respiratorios , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Pulso Arterial , Adulto Joven
16.
Med Devices (Auckl) ; 10: 47-52, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28260954

RESUMEN

INTRODUCTION: An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. OBJECTIVE: The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. MATERIALS AND METHODS: The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. RESULTS: The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. CONCLUSION: This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. SIGNIFICANCE: The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA