Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mem Cognit ; 44(1): 24-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26324093

RESUMEN

Test-enhanced learning and transfer for triple-associate word stimuli was assessed in three experiments. In each experiment, training and final-test trials involved the presentation of two words per triple associate (triplet), with the third word having to be retrieved. In agreement with the prior literature on different stimuli, training through testing with feedback yielded markedly better final-test performance than did restudy. However, in contrast to the positive transfer reported for paired associate stimuli, minimal or no positive transfer was observed, relative to a restudy control, from a trained cue combination (e.g., A, B, ?) to other cue combinations from the same triplet that required a different response (e.g., B, C, ?). That result also held when two unique cue combinations per triplet were tested during training, and for triplets with low and high average associative strengths. Supplementary analyses provided insight into the overall transfer effect: An incorrect response during training appears to yield positive transfer relative to restudy, whereas a correct response appears to yield no, or even negative, transfer. Cross-experiment analyses indicated that test-enhanced learning is not diminished when two or three cue combinations are presented during training. Thus, even though learning through testing is highly specific, testing on all possible stimulus-response combinations remains the most efficient strategy for the learning of triple associates.


Asunto(s)
Aprendizaje por Asociación/fisiología , Recuerdo Mental/fisiología , Transferencia de Experiencia en Psicología/fisiología , Adulto , Humanos , Adulto Joven
2.
Commun Integr Biol ; 5(6): 620-2, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23740166

RESUMEN

Neurons have unique challenges relative to other cell types. Unlike most other cells, neurons must remain healthy and functional throughout the lifespan of an animal. Premature neuronal loss underlies many age-related neurodegenerative diseases, including Alzheimer and Parkinson Diseases. Despite previous research aimed at understanding the mechanisms of age-related neurodegenerative diseases, little is known about the mechanisms that allow neurons to remain functional for the lifetime of a healthy animal. Understanding these cellular and biochemical processes is essential to promote healthful aging and reduce the severity of neurodegenerative disease. Here we discuss our recent identification of neuron-specific proteins that regulate endosome fusion events and the role of endosomes in maintaining healthy neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA