Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 585(7824): 298-302, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669707

RESUMEN

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Asunto(s)
Nucléolo Celular/enzimología , Nucléolo Celular/genética , ADN Ribosómico/genética , ARN Polimerasa II/metabolismo , ARN no Traducido/biosíntesis , ARN no Traducido/genética , Ribosomas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Nucléolo Celular/fisiología , ADN Helicasas/metabolismo , ADN Intergénico/genética , Humanos , Enzimas Multifuncionales/metabolismo , Biosíntesis de Proteínas , Estructuras R-Loop , ARN Helicasas/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/metabolismo , Ribonucleasa H/metabolismo , Ribosomas/química , Ribosomas/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
2.
Trends Genet ; 38(3): 290-304, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34598804

RESUMEN

The maintenance of genome stability and cellular homeostasis depends on the temporal and spatial coordination of successive events constituting the classical DNA damage response (DDR). Recent findings suggest close integration and coordination of DDR signaling with specific cellular processes. The mechanisms underlying such coordination remain unclear. We review emerging crosstalk between DNA repair factors, chromatin remodeling, replication, transcription, spatial genome organization, cytoskeletal forces, and liquid-liquid phase separation (LLPS) in mediating DNA repair. We present an overarching DNA repair framework within which these dynamic processes intersect in nuclear space over time. Collectively, this interplay ensures the efficient assembly of DNA repair proteins onto shifting genome structures to preserve genome stability and cell survival.


Asunto(s)
Cromatina , Reparación del ADN , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Daño del ADN/genética , Reparación del ADN/genética
3.
Nucleic Acids Res ; 51(9): 4341-4362, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36928661

RESUMEN

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.


Asunto(s)
Proteína BRCA1 , Replicación del ADN , Síndrome de Cáncer de Mama y Ovario Hereditario , Mutación , Transcripción Genética , Humanos , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Replicación del ADN/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/patología , Síndrome de Cáncer de Mama y Ovario Hereditario/fisiopatología , ARN Polimerasa II/metabolismo , Transcripción Genética/genética , Regiones Promotoras Genéticas , Metiltransferasas/deficiencia , Metiltransferasas/genética , Estructuras R-Loop , Muerte Celular
4.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37697435

RESUMEN

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , Inestabilidad Genómica , Recurrencia Local de Neoplasia , Estructuras R-Loop , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Trends Genet ; 35(8): 589-600, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31155151

RESUMEN

Genome expression and stability are dependent on biological processes that control repetitive DNA sequences and nuclear compartmentalization. The phase separation of macromolecules has recently emerged as a major player in the control of biological pathways. Here, we summarize recent studies that collectively reveal intersections between phase separation, repetitive DNA elements, and nuclear compartments. These intersections modulate fundamental processes, including gene expression, DNA repair, and cellular lifespan, in the context of health and diseases such as cancer and neurodegeneration.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma/genética , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Envejecimiento/genética , Compartimento Celular/genética , Reparación del ADN/genética , Sitios Genéticos/genética , Humanos
6.
Nat Rev Mol Cell Biol ; 11(5): 317-28, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20414256

RESUMEN

Non-random positioning of chromosomal domains relative to each other and to nuclear landmarks is a common feature of eukaryotic genomes. In particular, the distribution of DNA loci relative to the nuclear periphery has been linked to both transcriptional activation and repression. Nuclear pores and other integral membrane protein complexes are key players in the dynamic organization of the genome in the nucleus, and recent advances in our understanding of the molecular networks that organize genomes at the nuclear periphery point to a further role for non-random locus positioning in DNA repair, recombination and stability.


Asunto(s)
Regulación de la Expresión Génica , Genoma/genética , Inestabilidad Genómica , Membrana Nuclear/metabolismo , Animales , Citoesqueleto/metabolismo , ADN/metabolismo , Humanos
7.
Methods ; 142: 24-29, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29518498

RESUMEN

The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells.


Asunto(s)
Daño del ADN/genética , ADN/metabolismo , Microscopía Intravital/métodos , Imagen Molecular/métodos , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Microscopía Intravital/instrumentación , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Molecular/instrumentación , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo
8.
Nucleic Acids Res ; 44(18): 8870-8884, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27574117

RESUMEN

Dietary calorie restriction is a broadly acting intervention that extends the lifespan of various organisms from yeast to mammals. On another front, magnesium (Mg2+) is an essential biological metal critical to fundamental cellular processes and is commonly used as both a dietary supplement and treatment for some clinical conditions. If connections exist between calorie restriction and Mg2+ is unknown. Here, we show that Mg2+, acting alone or in response to dietary calorie restriction, allows eukaryotic cells to combat genome-destabilizing and lifespan-shortening accumulations of RNA-DNA hybrids, or R-loops. In an R-loop accumulation model of Pbp1-deficient Saccharomyces cerevisiae, magnesium ions guided by cell membrane Mg2+ transporters Alr1/2 act via Mg2+-sensitive R-loop suppressors Rnh1/201 and Pif1 to restore R-loop suppression, ribosomal DNA stability and cellular lifespan. Similarly, human cells deficient in ATXN2, the human ortholog of Pbp1, exhibit nuclear R-loop accumulations repressible by Mg2+ in a process that is dependent on the TRPM7 Mg2+ transporter and the RNaseH1 R-loop suppressor. Thus, we identify Mg2+ as a biochemical signal of beneficial calorie restriction, reveal an R-loop suppressing function for human ATXN2 and propose that practical magnesium supplementation regimens can be used to combat R-loop accumulation linked to the dysfunction of disease-linked human genes.


Asunto(s)
Restricción Calórica , ADN/genética , ADN/metabolismo , Inestabilidad Genómica , Magnesio/metabolismo , ARN/genética , ARN/metabolismo , Línea Celular , Humanos , Levaduras/genética , Levaduras/metabolismo
9.
Nature ; 456(7222): 667-70, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18997772

RESUMEN

Repetitive DNA sequences, which constitute half the genome in some organisms, often undergo homologous recombination. This can instigate genomic instability resulting from a gain or loss of DNA. Assembly of DNA into silent chromatin is generally thought to serve as a mechanism ensuring repeat stability by limiting access to the recombination machinery. Consistent with this notion is the observation, in the budding yeast Saccharomyces cerevisiae, that stability of the highly repetitive ribosomal DNA (rDNA) sequences requires a Sir2-containing chromatin silencing complex that also inhibits transcription from foreign promoters and transposons inserted within the repeats by a process called rDNA silencing. Here we describe a protein network that stabilizes rDNA repeats of budding yeast by means of interactions between rDNA-associated silencing proteins and two proteins of the inner nuclear membrane (INM). Deletion of either the INM or silencing proteins reduces perinuclear rDNA positioning, disrupts the nucleolus-nucleoplasm boundary, induces the formation of recombination foci, and destabilizes the repeats. In addition, artificial targeting of rDNA repeats to the INM suppresses the instability observed in cells lacking an rDNA-associated silencing protein that is typically required for peripheral tethering of the repeats. Moreover, in contrast to Sir2 and its associated nucleolar factors, the INM proteins are not required for rDNA silencing, indicating that Sir2-dependent silencing is not sufficient to inhibit recombination within the rDNA locus. These findings demonstrate a role for INM proteins in the perinuclear localization of chromosomes and show that tethering to the nuclear periphery is required for the stability of rDNA repeats. The INM proteins studied here are conserved and have been implicated in chromosome organization in metazoans. Our results therefore reveal an ancient mechanism in which interactions between INM proteins and chromosomal proteins ensure genome stability.


Asunto(s)
Cromosomas Fúngicos/metabolismo , ADN Ribosómico/genética , Silenciador del Gen , Inestabilidad Genómica/genética , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Efectos de la Posición Cromosómica , Proteínas Cromosómicas no Histona/metabolismo , Posicionamiento de Cromosoma , Cromosomas Fúngicos/genética , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Membrana Nuclear/química , Membrana Nuclear/genética , Unión Proteica , Recombinación Genética/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
10.
Nat Struct Mol Biol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632359

RESUMEN

Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1). These factors collaborate with the linker of nucleoskeleton and cytoskeleton complex (LINC), nuclear pore complex (NPC) protein NUP153, nuclear lamina and kinesins KIF5B and KIF13B to generate DSB-capturing nuclear envelope tubules (dsbNETs). dsbNETs are partly supported by nuclear actin filaments and the circadian factor PER1 and reversed by kinesin KIFC3. Although dsbNETs promote repair and survival, they are also co-opted during poly(ADP-ribose) polymerase (PARP) inhibition to restrain BRCA1-deficient breast cancer cells and are hyper-induced in cells expressing the aging-linked lamin A mutant progerin. In summary, our results advance understanding of nuclear structure-function relationships, uncover a nuclear-cytoplasmic DDR and identify dsbNETs as critical factors in genome organization and stability.

11.
Cell Rep ; 43(3): 113891, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427561

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Ribosómico/metabolismo , COVID-19/metabolismo , Ribosomas/metabolismo , Proteínas Virales/metabolismo , Proteínas no Estructurales Virales/metabolismo
12.
STAR Protoc ; 3(4): 101734, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36178790

RESUMEN

Modulating R-loop triplex nucleic acid structures reveals their roles across the genome. However, common approaches cannot ascribe functions to R-loops in a locus-associated manner. This protocol presents the use of a locus-associated R-loop-modulating system (dubbed LasR), which employs an inducible RNaseH1-EGFP-dCas9 chimaera. We detail the in silico design of sgRNAs and their transfection with the chimaera, and outline steps confirming RNaseH1-EGFP-dCas9 expression, localization, locus-targeted association, and R-loop modulation in cis or trans using immunoblotting, microscopy, and chromatin and DNA-RNA immunoprecipitation. For complete details on the use and execution of this protocol, please refer to Abraham et al. (2020).


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estructuras R-Loop , ARN/genética , ADN/metabolismo , Genoma
13.
Nat Commun ; 13(1): 5453, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114190

RESUMEN

Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.


Asunto(s)
ARN Polimerasa II , Proteínas del Complejo SMN , Humanos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , ARN Polimerasa II/efectos de los fármacos , ARN Polimerasa II/metabolismo , Proteínas del Complejo SMN/antagonistas & inhibidores , Proteínas del Complejo SMN/efectos de los fármacos , Proteínas del Complejo SMN/metabolismo
14.
Nat Cell Biol ; 6(7): 642-7, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15181450

RESUMEN

Hypoxia and acidosis occur in a wide variety of physiological and pathological settings that include muscle stress, tumour development and ischaemic disorders. A central element in the adaptive response to cellular hypoxia is HIF (hypoxia-inducible factor), a transcription factor that activates an array of genes implicated in oxygen homeostasis, tumour vascularization and ischaemic preconditioning. HIF is activated by hypoxia, but undergoes degradation by the VHL (von Hippel-Lindau) tumour suppressor protein in the presence of oxygen. Here, we demonstrate that hypoxia induction or normoxic acidosis can neutralize the function of VHL by triggering its nucleolar sequestration, a regulatory mechanism of protein function that is observed rarely. VHL is confined to nucleoli until neutral pH conditions are reinstated. Nucleolar sequestration of VHL enables HIF to evade destruction in the presence of oxygen and activate its target genes. Our findings suggest that an increase in hydrogen ions elicits a transient and reversible loss of VHL function by promoting its nucleolar sequestration.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Acidosis/genética , Acidosis/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Compartimento Celular/genética , Hipoxia de la Célula/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes , Humanos , Concentración de Iones de Hidrógeno , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteínas Luminiscentes , Ratones , Proteínas Nucleares/genética , Oxidación-Reducción , Oxígeno/metabolismo , Células PC12 , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Activación Transcripcional/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau
15.
Trends Cell Biol ; 31(9): 721-731, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33902985

RESUMEN

Microtubules are major cytoskeletal components mediating fundamental cellular processes, including cell division. Recent evidence suggests that microtubules also regulate the nucleus during the cell cycle's interphase stage. Deciphering such roles of microtubules should uncover direct crosstalk between the nucleus and cytoplasm, impacting genome function and organismal health. Here, we review emerging roles for microtubules in interphase genome regulation. We explore how microtubules exert cytoplasmic forces on the nucleus or transport molecular cargo, including DNA, into or within the nucleus. We also describe how microtubules perform these functions by establishing transient or stable connections with nuclear envelope elements. Lastly, we discuss how the regulation of the nucleus by microtubules impacts genome organization and repair. Together, the literature indicates that interphase microtubules are critical regulators of nuclear structure and genome stability.


Asunto(s)
Núcleo Celular , Microtúbulos , Citoesqueleto , Interfase , Membrana Nuclear
16.
J Clin Invest ; 131(3)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529165

RESUMEN

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Asunto(s)
Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , ADN de Neoplasias/metabolismo , Inestabilidad Genómica , Neoplasias Mamarias Animales/metabolismo , Neoplasias Ováricas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN de Neoplasias/genética , Femenino , Sitios Genéticos , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/genética
17.
J Cell Biol ; 170(5): 733-44, 2005 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16129783

RESUMEN

Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHL's beta-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Nucléolo Celular/ultraestructura , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Concentración de Iones de Hidrógeno , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Señales de Clasificación de Proteína , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2 , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau
18.
Mol Biol Cell ; 18(10): 3966-77, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17652456

RESUMEN

Proteins share peptidic sequences, such as a nuclear localization signal (NLS), which guide them to particular membrane-bound compartments. Similarities have also been observed within different classes of signals that target proteins to membrane-less subnuclear compartments. Common localization signals affect spatial and temporal subcellular organization and are thought to allow the coordinated response of different molecular networks to a given signaling cue. Here we identify a higher-order and predictive code, {[RR(I/L)X(3)r]((n, n > or = 1))+[L(phi/N)(V/L)]((n,n>1))}, that establishes high-affinity interactions between a group of proteins and the nucleolus in response to a specific signal. This position-independent code is referred to as a nucleolar detention signal regulated by H(+) (NoDS(H+)) and the class of proteins includes the cIAP2 apoptotic regulator, VHL ubiquitylation factor, HSC70 heat shock protein and RNF8 transcription regulator. By identifying a common subnuclear targeting consensus sequence, our work reveals rules governing the dynamics of subnuclear organization and ascribes new modes of regulation to several proteins with diverse steady-state distributions and dynamic properties.


Asunto(s)
Nucléolo Celular/metabolismo , Señales de Localización Nuclear/metabolismo , Acidosis , Secuencia de Aminoácidos , Línea Celular Tumoral , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutagénesis , Señales de Localización Nuclear/química , Reproducibilidad de los Resultados , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
19.
Commun Biol ; 3(1): 773, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319830

RESUMEN

Liquid-liquid phase separation (LLPS) has emerged as a central player in the assembly of membraneless compartments termed biomolecular condensates. These compartments are dynamic structures that can condense or dissolve under specific conditions to regulate molecular functions. Such properties allow biomolecular condensates to rapidly respond to changing endogenous or environmental conditions. Here, we review emerging roles for LLPS within the nuclear space, with a specific emphasis on genome organization, expression and repair. Our review highlights the emerging notion that biomolecular condensates regulate the sequential engagement of molecules in multistep biological processes.


Asunto(s)
Núcleo Celular/metabolismo , Fenómenos Fisiológicos Celulares , Fraccionamiento Celular , Fraccionamiento Químico , Reparación del ADN , Células Eucariotas/fisiología , Regulación de la Expresión Génica , Genoma , Genómica/métodos , Heterocromatina/genética , Heterocromatina/metabolismo , Fracciones Subcelulares
20.
Trends Cell Biol ; 30(2): 144-156, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31836279

RESUMEN

The increased mobility of damaged DNA within the nucleus can promote genome stability and cell survival. New cell biology approaches have indicated that damaged DNA mobility exhibits random and directed movements during DNA repair. Here, we review recent studies that collectively reveal that cooperation between different molecular mechanisms, which underlie increases in the random and directional motion of damaged DNA, can promote genome repair. We also review the latest approaches that can be used to distinguish between random and directed motions of damaged DNA or other biological molecules. Detailed understanding of the mechanisms behind the increased motion of damaged DNA within the nucleus will reveal more of the secrets of genome organization and stability while potentially pointing to novel research and therapeutic tools.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/metabolismo , Movimiento (Física) , Ensamble y Desensamble de Cromatina , Humanos , Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA