Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 121(4): 2545-2647, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33543942

RESUMEN

Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Modelos Moleculares , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas , Deficiencias en la Proteostasis/metabolismo , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
2.
J Chem Phys ; 158(9): 095103, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889954

RESUMEN

Mucociliary clearance is the first defense mechanism of the respiratory tract against inhaled particles. This mechanism is based on the collective beating motion of cilia at the surface of epithelial cells. Impaired clearance, either caused by malfunctioning or absent cilia, or mucus defects, is a symptom of many respiratory diseases. Here, by exploiting the lattice Boltzmann particle dynamics technique, we develop a model to simulate the dynamics of multiciliated cells in a two-layer fluid. First, we tuned our model to reproduce the characteristic length- and time-scales of the cilia beating. We then check for the emergence of the metachronal wave as a consequence of hydrodynamic mediated correlations between beating cilia. Finally, we tune the viscosity of the top fluid layer to simulate the mucus flow upon cilia beating, and evaluate the pushing efficiency of a carpet of cilia. With this work, we build a realistic framework that can be used to explore several important physiological aspects of mucociliary clearance.


Asunto(s)
Cilios , Depuración Mucociliar , Cilios/fisiología , Depuración Mucociliar/fisiología , Cinética , Células Epiteliales , Moco/fisiología
3.
J Chem Phys ; 159(13)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37787143

RESUMEN

Polyelectrolytes can electrophoretically be driven through nanopores in order to be detected. The respective translocation events are often very fast and the process needs to be controlled to promote efficient detection. To this end, we attempt to control the translocation dynamics by coating the inner surface of a nanopore. For this, different charge distributions are chosen that result in substantial variations of the pore-polymer interactions. In addition and in view of the existing detection modalities, experimental settings, and nanopore materials, different types of sensors inside the nanopore have been considered to probe the translocation process and its temporal spread. The respective transport of polyelectrolytes through the coated nanopores is modeled through a multi-physics computational scheme that incorporates a mesoscopic/electrokinetic description for the solvent and particle-based scheme for the polymer. This investigation could underline the interplay between sensing modality, nanopore material, and detection accuracy. The electro-osmotic flow and electrophoretic motion in a pore are analyzed together with the polymeric temporal and spatial fluctuations unraveling their correlations and pathways to optimize the translocation speed and dynamics. Accordingly, this work sketches pathways in order to tune the pore-polymer interactions in order to control the translocation dynamics and, in the long run, errors in their measurements.

4.
Biochem Biophys Res Commun ; 498(2): 296-304, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28917842

RESUMEN

Biomolecules are complex machines that are optimized by evolution to properly fulfill or contribute to a variety of biochemical tasks in the cellular environment. Computer simulations based on quantum mechanics and atomistic force fields have been proven to be a powerful microscope for obtaining valuable insights into many biological, physical, and chemical processes. Many interesting phenomena involve, however, a time scale and a number of degrees of freedom, notably if crowding is considered, that cannot be explored at an atomistic resolution. To bridge the gap between reality and simulation, many different advanced computational techniques and coarse-grained (CG) models have been developed. Here, we report some applications of the CG OPEP protein model to amyloid fibril formation, the response of catch-bond proteins to two types of fluid flow, and interactive simulations to fold peptides with well-defined 3D structures or with intrinsic disorder.


Asunto(s)
Péptidos beta-Amiloides/química , Modelos Moleculares , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Simulación de Dinámica Molecular , Método de Montecarlo , Pliegue de Proteína
5.
Langmuir ; 33(42): 11635-11645, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28793765

RESUMEN

We have developed a theoretical and computational approach to deal with systems that involve a disparate range of spatiotemporal scales, such as those composed of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multicomponent Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multicomponent description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. Lastly, we discuss the advantages and complexities of the approach.

6.
Soft Matter ; 12(26): 5727-38, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27301440

RESUMEN

We discuss different definitions of pressure for a system of active spherical particles driven by a non-thermal coloured noise. We show that mechanical, kinetic and free-energy based approaches lead to the same result up to first order in the non-equilibrium expansion parameter. The first prescription is based on a generalisation of the kinetic mesoscopic virial equation and expresses the pressure exerted on the walls in terms of the average of the virial of the inter-particle forces. In the second approach, the pressure and the surface tension are identified with the volume and area derivatives, respectively, of the partition function associated with the known stationary non-equilibrium distribution of the model. The third method is a mechanical approach and is related to the work necessary to deform the system. The pressure is obtained by comparing the expression of the work in terms of local stress and strain with the corresponding expression in terms of microscopic distribution. This is determined from the force balance encoded in the Born-Green-Yvon equation. Such a method has the advantage of giving a formula for the local pressure tensor and the surface tension even in inhomogeneous situations. By direct inspection, we show that the three procedures lead to the same values of the pressure, and give support to the idea that the partition function, obtained via the unified coloured noise approximation, is more than a formal property of the system, but determines the stationary non-equilibrium thermodynamics of the model.

7.
J Chem Phys ; 145(3): 035102, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27448906

RESUMEN

Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aß16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aß16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aß16-22 peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aß16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas , Algoritmos , Difusión , Fricción , Hidrodinámica , Cinética , Simulación de Dinámica Molecular , Multimerización de Proteína , Soluciones
8.
J Chem Phys ; 143(18): 184907, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26567684

RESUMEN

We analyze the electroosmotic flow (EOF) of an electrolytic solution in a polymer coated capillary electrophoresis tube. The polymeric density, charge, thickness, and the capillary tube charge vary as a function of pH and produce a non-trivial modulation of the EOF, including a flow reversal at acid pH conditions. By means of a theoretical argument and numerical simulations, we recover the experimental curve for the EOF, providing a firm approach for predictive analysis of electroosmosis under different polymeric coating conditions. A proposed application of the approach is to determine the near-wall charge of the coating to be used for further quantitative analysis of the electroosmotic flow and mobility.

9.
Chem Soc Rev ; 43(13): 4871-93, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24759934

RESUMEN

The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows the study of single protein properties, DNA-RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the ongoing developments.


Asunto(s)
Amiloide/química , ADN/química , Modelos Moleculares , Proteínas/química , ARN/química
10.
Phys Chem Chem Phys ; 16(46): 25473-82, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25343500

RESUMEN

Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.


Asunto(s)
Electroósmosis , Modelos Teóricos , Nanoestructuras/química , Conductividad Eléctrica , Polímeros/química , Porosidad
11.
Phys Chem Chem Phys ; 16(29): 15510-8, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24953220

RESUMEN

A hydro-kinetic scheme for water-like fluids, based on a lattice version of the Boltzmann equation, is presented and applied to the popular TIP3P model of liquid water. By proceeding in much larger steps than molecular dynamics, the scheme proves to be very effective in attaining global minima of classical pair potentials with directional and radial interactions, as confirmed by further simulations using the three-dimensional Ben-Naim water potential. The scheme is shown to reproduce the propensity of water to form nearly four hydrogen bonds per molecule, as well as their statistical distribution in the presence of thermal fluctuations, at a linear cost of computational time with the system size.

12.
J Chem Phys ; 141(1): 014102, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25005272

RESUMEN

When simulating multicomponent mixtures via the Lattice Boltzmann Method, it is desirable to control the mutual diffusivity between species while maintaining the viscosity of the solution fixed. This goal is herein achieved by a modification of the multicomponent Bhatnagar-Gross-Krook evolution equations by introducing two different timescales for mass and momentum diffusion. Diffusivity is thus controlled by an effective drag force acting between species. Numerical simulations confirm the accuracy of the method for neutral binary and charged ternary mixtures in bulk conditions. The simulation of a charged mixture in a charged slit channel show that the conductivity and electro-osmotic mobility exhibit a departure from the Helmholtz-Smoluchowski prediction at high diffusivity.


Asunto(s)
Hidrodinámica , Modelos Químicos , Soluciones/química , Viscosidad , Difusión , Electroósmosis , Cinética , Tamaño de la Partícula , Reología
13.
J Phys Chem Lett ; 15(7): 1943-1949, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38346112

RESUMEN

In this work, we investigate how fluid flows impact the aggregation mechanisms of Aß40 proteins and Aß16-22 peptides and mechanically perturb their (pre)fibrillar aggregates. We exploit the OPEP coarse-grained model for proteins and the Lattice Boltzmann Molecular Dynamics technique. We show that beyond a critical shear rate, amyloid aggregation speeds up in Couette flow because of the shorter collisions times between aggregates, following a transition from diffusion limited to advection dominated dynamics. We also characterize the mechanical deformation of (pre)fibrillar states due to the fluid flows (Couette and Poiseuille), confirming the capability of (pre)fibrils to form pathological loop-like structures as detected in experiments. Our findings can be of relevance for microfluidic applications and for understanding aggregation in the interstitial brain space.


Asunto(s)
Amiloide , Simulación de Dinámica Molecular , Amiloide/química , Difusión , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química
14.
J Chem Phys ; 138(24): 244107, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23822227

RESUMEN

We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of a symmetric binary electrolyte in channels whose section is nanometric and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one- and three-dimensional solutions of the electrokinetic equations.


Asunto(s)
Nanopartículas/química , Difusión
15.
Chem Soc Rev ; 41(5): 1665-76, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21975514

RESUMEN

Proteins from thermophilic and hyperthermophilic organisms are stable and function at high temperatures (50-100 °C). The importance of understanding the microscopic mechanisms underlying this thermal resistance is twofold: it is key for acquiring general clues on how proteins maintain their fold stable and for targeting those medical and industrial applications that aim at designing enzymes that can work under harsh conditions. In this tutorial review we first provide the general background of protein thermostability by specifically focusing on the structural and thermodynamic peculiarities; next, we discuss how computational studies based on Molecular Dynamics simulations can broaden and refine our knowledge on such special class of proteins.


Asunto(s)
Proteínas/química , Dominio Catalítico , Simulación de Dinámica Molecular , Estabilidad Proteica , Proteínas/metabolismo , Teoría Cuántica , Temperatura , Termodinámica
16.
J Phys Chem B ; 127(16): 3616-3623, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37071827

RESUMEN

Macromolecular crowding has profound effects on the mobility of proteins, with strong implications on the rates of intracellular processes. To describe the dynamics of crowded environments, detailed molecular models are needed, capturing the structures and interactions arising in the crowded system. In this work, we present OPEPv7, which is a coarse-grained force field at amino-acid resolution, suited for rigid-body simulations of the structure and dynamics of crowded solutions formed by globular proteins. Using the OPEP protein model as a starting point, we have refined the intermolecular interactions to match the experimentally observed dynamical slowdown caused by crowding. The resulting force field successfully reproduces the diffusion slowdown in homogeneous and heterogeneous protein solutions at different crowding conditions. Coupled with the lattice Boltzmann technique, it allows the study of dynamical phenomena in protein assemblies and opens the way for the in silico rheology of protein solutions.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/química , Simulación por Computador , Soluciones
17.
ACS Cent Sci ; 9(1): 93-102, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36712493

RESUMEN

Temperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of E. coli, we clearly show that only a minor fraction of the proteome unfolds at the cell death. First, we prove that the dynamical state of the E. coli proteome is an excellent proxy for temperature-dependent bacterial metabolism and death. The proteome diffusive dynamics peaks at about the bacterial optimal growth temperature, then a dramatic dynamical slowdown is observed that starts just below the cell's death temperature. Next, we show that this slowdown is caused by the unfolding of just a small fraction of proteins that establish an entangling interprotein network, dominated by hydrophobic interactions, across the cytoplasm. Finally, the deduced progress of the proteome unfolding and its diffusive dynamics are both key to correctly reproduce the E. coli growth rate.

18.
Langmuir ; 28(38): 13727-40, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22916965

RESUMEN

We introduce a theoretical and numerical method to investigate the flow of charged fluid mixtures under extreme confinement. We model the electrolyte solution as a ternary mixture comprising two ionic species of opposite charge and a third uncharged component. The microscopy approach is based on kinetic theory and is fully self-consistent. It allows us to determine configurational properties, such as layering near the confining walls and the flow properties. We show that, under the appropriate assumptions, the approach reproduces the phenomenological equations used to describe electrokinetic phenomena, without requiring the introduction of constitutive equations to determine the fluxes. Moreover, we model channels of arbitrary shape and nanometric roughness, features that have important repercussions on the transport properties of these systems. Numerical simulations are obtained by solving the evolution dynamics of the one-particle phase-space distributions of each species by means of a lattice Boltzmann method for flows in straight and wedged channels. Results are presented for the microscopic density, the velocity profiles, and the volumetric and charge flow rates. Strong departures from electroneutrality are shown to appear at the molecular level.


Asunto(s)
Nanotecnología , Teoría Cuántica , Electrólitos/química , Cinética , Soluciones
20.
J Chem Phys ; 137(10): 105102, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22979896

RESUMEN

We derive the coarse-grained interactions between DNA nucleotides from ab initio total-energy calculations based on density functional theory (DFT). The interactions take into account base and sequence specificity, and are decomposed into physically distinct contributions that include hydrogen bonding, stacking interactions, backbone, and backbone-base interactions. The interaction energies of each contribution are calculated from DFT for a wide range of configurations and are fitted by simple analytical expressions for use in the coarse-grained model, which reduces each nucleotide into two sites. This model is not derived from experimental data, yet it successfully reproduces the stable B-DNA structure and gives good predictions for the persistence length. It may be used to realistically probe dynamics of DNA strands in various environments at the µs time scale and the µm length scale.


Asunto(s)
ADN/química , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA