Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 19(1): 63, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236378

RESUMEN

BACKGROUND: Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. METHODS: Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1ß, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). RESULTS: The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. CONCLUSION: Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.


Asunto(s)
Células Madre Mesenquimatosas , Células Ganglionares de la Retina , Animales , Modelos Animales de Enfermedad , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Neuroprotección/fisiología , Ratas , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35408986

RESUMEN

The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.


Asunto(s)
Lesiones de la Cornea , Epitelio Corneal , Córnea/metabolismo , Lesiones de la Cornea/metabolismo , Epitelio Corneal/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cicatrización de Heridas/fisiología
3.
J Neuroinflammation ; 18(1): 79, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757529

RESUMEN

BACKGROUND: Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization. METHODS: Repeated intrathecal (i.t.) administration of the CCR2 antagonist, INCB3344 was tested for its ability to reverse the nociceptive-related behaviors in the tonic formalin and complete Freund's adjuvant (CFA) inflammatory models. We further determined by qPCR the expression of CCL2/CCR2, SP and CGRP in DRG neurons from CFA-treated rats. Using DRG explants, acutely dissociated primary sensory neurons and calcium mobilization assay, we also assessed the release of CCL2 and sensitization of nociceptors. Finally, we examined by immunohistochemistry following nerve ligation the axonal transport of CCL2, SP, and CGRP from the sciatic nerve of CFA-treated rats. RESULTS: We first found that CFA-induced paw edema provoked an increase in CCL2/CCR2 and SP expression in ipsilateral DRGs, which was decreased after INCB3344 treatment. This upregulation in pronociceptive neuromodulators was accompanied by an enhanced nociceptive neuron excitability on days 3 and 10 post-CFA, as revealed by the CCR2-dependent increase in intracellular calcium mobilization following CCL2 stimulation. In DRG explants, we further demonstrated that the release of CCL2 was increased following peripheral inflammation. Finally, the excitation of nociceptors following peripheral inflammation stimulated the anterograde transport of SP at their peripheral nerve terminals. Importantly, blockade of CCR2 reduced sensory neuron excitability by limiting the calcium mobilization and subsequently decreased peripheral transport of SP towards the periphery. Finally, pharmacological inhibition of CCR2 reversed the pronociceptive action of CCL2 in rats receiving formalin injection and significantly reduced the neurogenic inflammation as well as the stimuli-evoked and movement-evoked nociceptive behaviors in CFA-treated rats. CONCLUSIONS: Our results provide significant mechanistic insights into the role of CCL2/CCR2 within the DRG in the development of peripheral inflammation, nociceptor sensitization, and pain hypersensitivity. We further unveil the therapeutic potential of targeting CCR2 for the treatment of painful inflammatory disorders.


Asunto(s)
Quimiocina CCL2/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Dolor/metabolismo , Receptores CCR2/antagonistas & inhibidores , Receptores CCR2/metabolismo , Animales , Células Cultivadas , Adyuvante de Freund/toxicidad , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inyecciones Espinales , Masculino , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Pirrolidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley
4.
Anal Bioanal Chem ; 413(19): 4825-4836, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34125263

RESUMEN

The in-depth knowledge of lipid biological functions needs a comprehensive structural annotation including a method to locate fatty acid unsaturations, which remains a thorny problem. For this purpose, we have associated Grubbs' cross-metathesis reaction and liquid chromatography hyphenated to tandem mass spectrometry to locate double bond positions in lipid species. The pretreatment of lipid-containing samples by Grubbs' catalyst and an appropriate alkene generates substituted lipids through cross-metathesis reaction under mild, chemoselective, and reproducible conditions. A systematic LC-MS/MS analysis of the reaction mixture allows locating unambiguously the double bonds in fatty acid side chains of phospholipids, glycerolipids, and sphingolipids. This method has been successfully applied at a nanomole scale to commercial standard mixtures consisting of 10 lipid subclasses as well as in lipid extracts of human corneal epithelial (HCE) cell line allowing to pinpoint double bond of more than 90 species. This method has also been useful to investigate the lipid homeostasis alteration in an in vitro model of corneal toxicity, i.e., HCE cells incubated with benzalkonium chloride. The association of cross-metathesis and tandem mass spectrometry appears suitable to locate double bond positions in lipids involved in relevant biological processes.


Asunto(s)
Córnea/citología , Lipidómica/métodos , Lípidos/química , Espectrometría de Masas/métodos , Córnea/química , Humanos , Metabolismo de los Lípidos
5.
Nat Rev Neurosci ; 16(2): 69-78, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25588373

RESUMEN

Chemokines and opioids are important regulators of immune, inflammatory and neuronal responses in peripheral and central pain pathways. Recent studies have provided insights into the functional interactions between chemokine receptors and opioid receptors, and their role in pain modulation. In this Progress article, we discuss how crosstalk between these two systems might provide a molecular and cellular framework for the development of novel analgesic therapies for the management of acute and/or chronic pain.


Asunto(s)
Manejo del Dolor , Dolor/metabolismo , Receptor Cross-Talk/fisiología , Receptores de Quimiocina/metabolismo , Receptores Opioides/metabolismo , Humanos
6.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228217

RESUMEN

Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.


Asunto(s)
Antiinflamatorios/farmacología , Síndromes de Ojo Seco/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Ácidos Nicotínicos/farmacología , Canales Catiónicos TRPM/genética , Tiofenos/farmacología , Administración Oftálmica , Animales , Antiinflamatorios/uso terapéutico , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Frío , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/fisiopatología , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/complicaciones , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Ganglios Parasimpáticos/efectos de los fármacos , Ganglios Parasimpáticos/metabolismo , Ganglios Parasimpáticos/fisiopatología , Regulación de la Expresión Génica , Glándula de Harder/cirugía , Hiperalgesia/etiología , Hiperalgesia/genética , Hiperalgesia/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Aparato Lagrimal/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/etiología , Neuralgia/genética , Neuralgia/metabolismo , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/fisiopatología
7.
J Neuroinflammation ; 16(1): 268, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847868

RESUMEN

BACKGROUND: Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. METHODS: A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. RESULTS: We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1ß), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1ß, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. CONCLUSIONS: Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.


Asunto(s)
Córnea/fisiopatología , Síndromes de Ojo Seco/fisiopatología , Hiperalgesia/fisiopatología , Plasticidad Neuronal/fisiología , Núcleos del Trigémino/fisiopatología , Animales , Enfermedad Crónica , Femenino , Inflamación/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ganglio del Trigémino/fisiopatología
8.
Int J Mol Sci ; 19(4)2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29673232

RESUMEN

Dry eye symptoms are among the leading complaints in ophthalmology. Dry eye disease (DED) is associated with significant pain affecting quality of life. Cellular and molecular mechanisms underlying ocular pain associated with DED are not fully understood. In this study, we investigated the ocular surface of patients with DED using in vivo confocal microscopy (IVCM) to quantify corneal nerve density and its relation with corneal inflammation. Gene expression of the proinflammatory markers HLA-DR, IL-6, CXCL12, and CCL2 and the receptors CXCR4 and CCR2, as well as PENK (enkephalin precursor), was therefore quantified in conjunctival impression cytology specimens. Thirty-two patients with DED and 15 age-matched controls were included. Subbasal nerve density was significantly lower in DED patients compared to controls. IVCM analysis revealed that DED patients had a significantly higher corneal dendritic cell density compared to controls. Conjunctival impression cytology analysis revealed that HLA-DR, IL-6, CXCR4, and CCL2/CCR2 mRNA levels were significantly increased in DED patients compared to controls, whereas PENK mRNA levels were significantly decreased. Similar results were obtained in vitro on immortalized human conjunctiva-derived epithelial cells challenged with osmotic stress that mimics the DED condition. These results demonstrate that proinflammatory molecules and endogenous enkephalin have opposite gene regulation during DED.


Asunto(s)
Quimiocinas/análisis , Conjuntiva/patología , Síndromes de Ojo Seco/complicaciones , Encefalinas/análisis , Inflamación/complicaciones , Adulto , Anciano , Biomarcadores/análisis , Células Cultivadas , Quimiocinas/genética , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/patología , Encefalinas/genética , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Persona de Mediana Edad
9.
J Neurosci ; 35(1): 4-20, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568099

RESUMEN

The declining efficiency of myelin regeneration in individuals with multiple sclerosis has stimulated a search for ways by which it might be therapeutically enhanced. Here we have used gene expression profiling on purified murine oligodendrocyte progenitor cells (OPCs), the remyelinating cells of the adult CNS, to obtain a comprehensive picture of how they become activated after demyelination and how this enables them to contribute to remyelination. We find that adult OPCs have a transcriptome more similar to that of oligodendrocytes than to neonatal OPCs, but revert to a neonatal-like transcriptome when activated. Part of the activation response involves increased expression of two genes of the innate immune system, IL1ß and CCL2, which enhance the mobilization of OPCs. Our results add a new dimension to the role of the innate immune system in CNS regeneration, revealing how OPCs themselves contribute to the postinjury inflammatory milieu by producing cytokines that directly enhance their repopulation of areas of demyelination and hence their ability to contribute to remyelination.


Asunto(s)
Movimiento Celular/inmunología , Enfermedades Desmielinizantes/inmunología , Inmunidad Innata/inmunología , Células-Madre Neurales/inmunología , Neurogénesis/inmunología , Factores de Edad , Animales , Animales Recién Nacidos , Enfermedades Desmielinizantes/patología , Femenino , Masculino , Ratones , Ratones Transgénicos , Ratas , Porcinos
10.
Neurobiol Dis ; 88: 16-28, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26747211

RESUMEN

Ocular surface diseases are among the most frequent ocular pathologies, with prevalence ranging from 20% of the general population. In addition, ocular pain following corneal injury is frequently observed in clinic. The aim of the study was to characterize the peripheral and central neuroinflammatory process in the trigeminal pathways in response to cornea alteration induced by chronic topical instillations of 0.2% benzalkonium chloride (BAC) in male C57BL/6J mice. In vitro BAC induced neurotoxicity and increases neuronal (FOS, ATF3) and pro-inflammatory (IL-6) markers in primary mouse trigeminal ganglion culture. BAC-treated mice exhibited 7days after the treatment reduced aqueous tear production and increased inflammatory cell infiltration in the cornea. Hypertonic saline-evoked eye wipe behavior was enhanced in BAC-treated animals that exhibited increased FOS, ATF3 and Iba1 immunoreactivity in the trigeminal ganglion. Ocular inflammation is associated with a significant increase in IL-6 and TNF-α mRNA expression in the trigeminal ganglion. We reported a strong increase in FOS and Iba1 positive cells in particular in the sensory trigeminal complex at the ipsilateral interpolaris/caudalis (Vi/Vc) transition and Vc/upper cervical cord (Vc/C1) regions. In addition, activated microglial cells were tightly wrapped around activated FOS neurons in both regions and phosphorylated p38 mitogen-activated protein kinase was markedly enhanced specifically in microglial cells during ocular inflammation. Similar data were obtained in the facial motor nucleus. These neuroanatomical data correlated with the increase in mRNA expression of pro-inflammatory (TNF-α, IL-6, CCL2) and neuronal (FOS and ATF3) markers. Interestingly, the suppression of corneal inflammation 10days following the end of BAC treatment resulted in a marked attenuation of peripheral and central changes observed in pathological conditions. This study provides the first demonstration that corneal inflammation induces activation of neurons and microglial p38 MAPK pathway within sensory trigeminal complex. These results suggest that this altered activity in intracellular signaling caused by ocular inflammation might play a priming role in the central sensitization of ocular related brainstem circuits, which represents a significant factor in ocular pain development.


Asunto(s)
Encefalitis/etiología , Lesiones Oculares/complicaciones , Neuritis/etiología , Neuralgia del Trigémino/etiología , Animales , Antiinfecciosos Locales/toxicidad , Compuestos de Benzalconio/toxicidad , Córnea/patología , Modelos Animales de Enfermedad , Lesiones Oculares/inducido químicamente , Movimientos Oculares/efectos de los fármacos , Movimientos Oculares/fisiología , Lateralidad Funcional/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas v-fos/metabolismo , Factores de Tiempo , Ganglio del Trigémino/efectos de los fármacos
11.
J Neuroinflammation ; 13: 44, 2016 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-26897546

RESUMEN

BACKGROUND: Glaucoma is one of the leading causes of irreversible blindness in the world. The major risk factor is elevated intraocular pressure (IOP) leading to progressive retinal ganglion cell (RGC) death from the optic nerve (ON) to visual pathways in the brain. Glaucoma has been reported to share mechanisms with neurodegenerative disorders. We therefore hypothesize that neuroinflammatory mechanisms in central visual pathways may contribute to the spread of glaucoma disease. The aim of the present study was to analyze the neuroinflammation processes that occur from the pathological retina to the superior colliculi (SCs) in a rat model of unilateral ocular hypertension induced by episcleral vein cauterization (EVC). RESULTS: Six weeks after unilateral (right eye) EVC in male Long-Evans rats, we evaluated both the neurodegenerative process and the neuroinflammatory state in visual pathway tissues. RGCs immunolabeled (Brn3a(+)) in ipsilateral whole flat-mounted retina demonstrated peripheral RGC loss associated with tissue macrophage/microglia activation (CD68(+)). Gene expression analysis of hypertensive and normotensive retinas revealed a significant increase of pro-inflammatory genes such as CCL2, IL-1ß, and Nox2 mRNA expression compared to naïve eyes. Importantly, we found an upregulation of pro-inflammatory markers such as IL-1ß and TNFα and astrocyte and tissue macrophage/microglia activation in hypertensive and normotensive RGC projection sites in the SCs compared to a naïve SC. To understand how neuroinflammation in the hypertensive retina is sufficient to damage both right and left SCs and the normotensive retina, we used an inflammatory model consisting in an unilateral stereotaxic injection of TNFα (25 ng/µl) in the right SC of naïve rats. Two weeks after TNFα injection, using an optomotor test, we observed that rats had visual deficiency in both eyes. Furthermore, both SCs showed an upregulation of genes and proteins for astrocytes, microglia, and pro-inflammatory cytokines, notably IL-1ß. In addition, both retinas exhibited a significant increase of inflammatory markers compared to a naïve retina. CONCLUSIONS: All these data evidence the complex role played by the SCs in the propagation of neuroinflammatory events induced by unilateral ocular hypertension and provide a new insight into the spread of neurodegenerative diseases such as glaucoma.


Asunto(s)
Encefalitis/complicaciones , Encefalitis/patología , Lateralidad Funcional/fisiología , Hipertensión Ocular/etiología , Regulación hacia Arriba/fisiología , Vías Visuales/patología , Animales , Antígenos CD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Toxina del Cólera/farmacocinética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Hipertensión Ocular/patología , Optometría , Compuestos Orgánicos/farmacocinética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Long-Evans , Células Ganglionares de la Retina/patología , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos , Vías Visuales/metabolismo
12.
Exp Eye Res ; 139: 136-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26072022

RESUMEN

Tissue clearing and subsequent imaging of intact transparent tissues have provided an innovative way to analyze anatomical pathways in the nervous system. In this study, we combined a recent 3-dimensional imaging of solvent cleared organ (3DISCO) procedure, light-sheet microscopy, fluorescent retrograde tracer, and Imaris software to 3D map corneal sensory neurons within a whole adult mouse trigeminal ganglion (TG). We first established the optimized steps to easily and rapidly clear a fixed TG. We found that the 3DISCO procedure gave excellent results and took less than 3 h to clear the TG. In a second set of experiments, a retrograde tracer (cholera toxin B Alexa 594-conjugated) was applied to de-epithelialized cornea to retrograde-labeled corneal sensory neurons. Two days later, TGs were cleared by the 3DISCO method and serial imaging was performed using light-sheet ultramicroscopic technology. High-resolution images of labeled neurons can be easily and rapidly obtained from a 3D reconstructed whole mouse TG. We then provided a 3D reconstruction of corneal afferent neurons and analyzed their precise localization in the TG. Thus, we showed that neurons supplying corneal sensory innervation exhibit a highly specific limited dorsomedial localization within the TG. We report that our combined method offers the possibility to perform manual (on 20 µm sections) and automated (on 3D reconstructed TG) counting of labeled cells in a cleared mouse TG. To conclude, we illustrate that the combination of the 3DISCO clearing method with light-sheet microscopy, retrograde tracer, and automatic counting represents a rapid and reliable method to analyze a subpopulation of neurons within the peripheral and central nervous system.


Asunto(s)
Córnea/inervación , Enfermedades de la Córnea/diagnóstico , Imagenología Tridimensional , Microscopía/métodos , Neuronas Aferentes/ultraestructura , Sensación , Ganglio del Trigémino/ultraestructura , Animales , Enfermedades de la Córnea/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/fisiología , Ganglio del Trigémino/fisiología
13.
Brain Behav Immun ; 45: 198-210, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25449579

RESUMEN

Neuropathic pain resulting from peripheral nerve injury involves many persistent neuroinflammatory processes including inflammatory chemokines that control leukocyte trafficking and activate resident cells. Several studies have shown that CCL2 chemokine, a potent attractant of monocytes, and its cognate receptor, CCR2, play a critical role in regulating nociceptive processes during neuropathic pain. However, the role of CCL2 in peripheral leukocyte infiltration-associated neuropathic pain remains poorly understood. In particular, the contribution of individual CCL2-expressing cell populations (i.e. stromal and leukocytes) to immune cell recruitment into the injured nerve has not been established. Here, in preclinical model of peripheral neuropathic pain (i.e. chronic constriction injury of the sciatic nerve), we have demonstrated that, CCL2 content was increased specifically in nerve fibers. This upregulation of CCL2 correlated with local monocyte/macrophage infiltration and pain processing. Furthermore, sciatic intraneural microinjection of CCL2 in naïve animals triggered long-lasting pain behavior associated with local monocyte/macrophage recruitment. Using a specific CCR2 antagonist and mice with a CCL2 genetic deletion, we have also established that the CCL2/CCR2 axis drives monocyte/macrophage infiltration and pain hypersensitivity in the CCI model. Finally, specific deletion of CCL2 in stromal or immune cells respectively using irradiated bone marrow-chimeric CCI mice demonstrated that stromal cell-derived CCL2 (in contrast to CCL2 immune cell-derived) tightly controls monocyte/macrophage recruitment into the lesion and plays a major role in the development of neuropathic pain. These findings demonstrate that in chronic pain states, CCL2 expressed by sciatic nerve cells predominantly drove local neuro-immune interactions and pain-related behavior through CCR2 signaling.


Asunto(s)
Quimiocina CCL2/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Neuralgia/inmunología , Traumatismos de los Nervios Periféricos/inmunología , Nervio Ciático/lesiones , Animales , Trasplante de Médula Ósea , Constricción Patológica , Hiperalgesia/genética , Hiperalgesia/inmunología , Ratones , Células Mieloides/inmunología , Ratas , Nervio Ciático/inmunología , Regulación hacia Arriba
14.
J Neuroinflammation ; 11: 45, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24606981

RESUMEN

BACKGROUND: Functional alterations in the properties of Aß afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Na(v)1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Na(v)1.8 in controlling Aß-fiber excitability following persistent inflammation. METHODS: Distribution and expression of Na(v)1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund's adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Na(v)1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Na(v)1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. RESULTS: Our findings revealed that Na(v)1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Na(v)1.8 peak current densities are enhanced in inflamed large myelinated Aß-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aß-fiber neuron excitability by shifting the voltage-dependent activation of Na(v)1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Na(v)1.8 currents in Aß-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Na(v)1.8 regulation in Aß-fibers contributes to inflammatory pain. CONCLUSIONS: Collectively, these findings support a key role for Na(v)1.8 in controlling the excitability of Aß-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.


Asunto(s)
Ganglios Espinales/citología , Regulación de la Expresión Génica/fisiología , Inflamación/patología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuronas/metabolismo , Nervio Ciático/metabolismo , Ambroxol/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Adyuvante de Freund , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/complicaciones , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
15.
Brain Behav Immun ; 38: 38-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24263070

RESUMEN

Functional interactions between the chemokine receptor CXCR4 and opioid receptors have been reported in the brain, leading to a decreased morphine analgesic activity. However the cellular mechanisms responsible for this loss of opioid analgesia are largely unknown. Here we examined whether Src family-kinases (SFK)-linked mechanisms induced by CXCR4 contributed to the loss of acute morphine analgesia and could represent a new physiological anti-opioid signaling pathway. In this way, we showed by immunohistochemistry and western blot that CXCL12 rapidly activated SFK phosphorylation in vitro in primary cultured lumbar rat dorsal root ganglia (DRG) but also in vivo in the DRG and the spinal cord. We showed that SFK activation occurred in a sub population of sensory neurons, in spinal microglia but also in spinal nerve terminals expressing mu-(MOR) and delta-opioid (DOR) receptor. In addition we described that CXCR4 is detected in MOR- and DOR-immunoreactive neurons in the DRG and spinal cord. In vivo, we demonstrated that an intrathecal administration of CXCL12 (1µg) significantly attenuated the subcutaneous morphine (4mg/kg) analgesia. Conversely, pretreatment with a potent CXCR4 antagonist (5µg) significantly enhanced morphine analgesia. Similar effects were obtained after an intrathecal injection of a specific SFK inhibitor, PP2 (10µg). Furthermore, PP2 abrogated CXCL12-induced decrease in morphine analgesia by suppressing SFK activation in the spinal cord. In conclusion, our data highlight that CXCL12-induced loss of acute morphine analgesia is linked to Src family kinases activation.


Asunto(s)
Analgésicos Opioides/farmacología , Quimiocina CXCL12/farmacología , Ganglios Espinales/enzimología , Morfina/farmacología , Receptores CXCR4/metabolismo , Familia-src Quinasas/metabolismo , Animales , Tolerancia a Medicamentos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino , Microglía/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley
16.
J Neurosci ; 31(15): 5865-75, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490228

RESUMEN

CCL2 chemokine and its receptor CCR2 may contribute to neuropathic pain development. We tested the hypothesis that injury to peripheral nerves triggers CCL2 release from afferents in the dorsal horn spinal cord (DHSC), leading to pronociceptive effects, involving the production of proinflammatory factors, in particular. Consistent with the release of CCL2 from primary afferents, electron microscopy showed the CCL2 immunoreactivity in glomerular boutons and secretory vesicles in the DHSC of naive rats. Through the ex vivo superfusion of DHSC slices, we demonstrated that the rate of CCL2 secretion was much lower in neonatal capsaicin-treated rats than in controls. Thus, much of the CCL2 released in the DHSC originates from nociceptive fibers bearing TRPV1 (transient receptor potential vanilloid 1). In contrast, high levels of CCL2 released from the DHSC were observed in neuropathic pain animal model induced by chronic constriction of the sciatic nerve (SN-CCI). The upregulated expression of proinflammatory markers and extracellular signal-regulated kinase (ERK) 1/2 pathway activation (ERK1/2 phosphorylation) in the DHSC of SN-CCI animals were reversed by intrathecal administration of the CCR2 antagonist INCB3344 (N-[2-[[(3S,4S)-1-E4-(1,3-benzodioxol-5-yl)-4-hydroxycyclohexyl]-4-ethoxy-3-pyrrolidinyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide). These pathological pain-associated changes in the DHSC were mimicked by the intrathecal injection of exogenous CCL2 in naive rats and were prevented by the administration of INCB3344 or ERK inhibitor (PD98059). Finally, mechanical allodynia, which was fully developed 2 weeks after SN-CCI in rats, was attenuated by the intrathecal injection of INCB3344. Our data demonstrate that CCL2 has the typical characteristics of a neuronal mediator involved in nociceptive signal processing and that antagonists of its receptor are promising agents from treating neuropathic pain.


Asunto(s)
Quimiocina CCL2/metabolismo , Inflamación/patología , Neuralgia/patología , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos , Médula Espinal/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/farmacología , Enfermedad Crónica , Constricción Patológica , Ensayo de Inmunoadsorción Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Técnica del Anticuerpo Fluorescente , Hiperalgesia/patología , Inmunohistoquímica , Masculino , Microscopía Electrónica , Inhibidores de Proteínas Quinasas/farmacología , Pirrolidinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Receptores CCR2/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nervio Ciático/lesiones , Nervio Ciático/patología , Médula Espinal/citología
17.
J Neurosci ; 31(50): 18381-90, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22171040

RESUMEN

Changes in function of voltage-gated sodium channels in nociceptive primary sensory neurons participate in the development of peripheral hyperexcitability that occurs in neuropathic and inflammatory chronic pain conditions. Among them, the tetrodotoxin-resistant (TTX-R) sodium channel Na(v)1.8, primarily expressed by small- and medium-sized dorsal root ganglion (DRG) neurons, substantially contributes to the upstroke of action potential in these neurons. Compelling evidence also revealed that the chemokine CCL2 plays a critical role in chronic pain facilitation via its binding to CCR2 receptors. In this study, we therefore investigated the effects of CCL2 on the density and kinetic properties of TTX-R Na(v)1.8 currents in acutely small/medium dissociated lumbar DRG neurons from naive adult rats. Whole-cell patch-clamp recordings demonstrated that CCL2 concentration-dependently increased TTX-resistant Na(v)1.8 current densities in both small- and medium-diameter sensory neurons. Incubation with CCL2 also shifted the activation and steady-state inactivation curves of Na(v)1.8 in a hyperpolarizing direction in small sensory neurons. No change in the activation and inactivation kinetics was, however, observed in medium-sized nociceptive neurons. Our electrophysiological recordings also demonstrated that the selective CCR2 antagonist INCB3344 [N-[2-[[(3S,4S)-1-E4-(1,3-benzodioxol-5-yl)-4-hydroxycyclohexyl]-4-ethoxy-3-pyrrolidinyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide] blocks the potentiation of Na(v)1.8 currents by CCL2 in a concentration-dependent manner. Furthermore, the enhancement in Na(v)1.8 currents was prevented by pretreatment with pertussis toxin (PTX) or gallein (a Gßγ inhibitor), indicating the involvement of Gßγ released from PTX-sensitive G(i/o)-proteins in the cross talk between CCR2 and Na(v)1.8. Together, our data clearly demonstrate that CCL2 may excite primary sensory neurons by acting on the biophysical properties of Na(v)1.8 currents via a CCR2/Gßγ-dependent mechanism.


Asunto(s)
Quimiocina CCL2/farmacología , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Quimiocina CCL2/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Canal de Sodio Activado por Voltaje NAV1.8 , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos
18.
Front Neuroendocrinol ; 32(1): 10-24, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20624414

RESUMEN

Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission. Although we are only beginning to be aware of the implication of chemokines in neuroendocrine functions, this review aims at summarizing what is known in that booming field of research. First we describe the expression of chemokines and their receptors in the CNS with a focus on the hypothalamo-pituitary system. Secondly, we present what is known on some chemokines in the regulation of neuroendocrine functions such as cell migration, stress, thermoregulation, drinking and feeding as well as anterior pituitary functions. We suggest that chemokines provide a fine modulatory tuning system of neuroendocrine regulations.


Asunto(s)
Quimiocinas/fisiología , Sistemas Neurosecretores/fisiología , Receptores de Quimiocina/fisiología , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Humanos , Modelos Biológicos , Sistemas Neurosecretores/metabolismo , Adenohipófisis/metabolismo , Adenohipófisis/fisiología , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo
19.
Eur J Neurosci ; 36(5): 2619-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22694179

RESUMEN

Initial studies implicated the chemokine CXC motif ligand 12 (CXCL12) and its cognate CXC motif receptor 4 (CXCR4) in pain modulation. However, there has been no description of the distribution, transport and axonal sorting of CXCL12 and CXCR4 in rat nociceptive structures, and their direct participation in nociception modulation has not been demonstrated. Here, we report that acute intrathecal administration of CXCL12 induced mechanical hypersensitivity in naive rats. This effect was prevented by a CXCR4-neutralizing antibody. To determine the morphological basis of this behavioural response, we used light and electron microscopic immunohistochemistry to map CXCL12- and CXCR4-immunoreactive elements in dorsal root ganglia, lumbar spinal cord, sciatic nerve and skin. Light microscopy analysis revealed CXCL12 and CXCR4 immunoreactivity in calcitonin gene related peptide-containing peptidergic primary sensory neurons, which were both conveyed to central and peripheral sensory nerve terminals. Electron microscopy clearly demonstrated CXCL12 and CXCR4 immunoreactivity in primary sensory nerve terminals in the dorsal horn; both were sorted into small clear vesicles and large dense-core vesicles. This suggests that CXCL12 and CXCR4 are trafficked from nerve cell bodies to the dorsal horn. Double immunogold labelling for CXCL12 and calcitonin gene related peptide revealed partial vesicular colocalization in axonal terminals. We report, for the first time, that CXCR4 receptors are mainly located on the neuronal plasma membrane, where they are present at pre-synaptic and post-synaptic sites of central terminals. Receptor inactivation experiments, behavioural studies and morphological analyses provide strong evidence that the CXCL12/CXCR4 system is involved in modulation of nociceptive signalling.


Asunto(s)
Quimiocina CXCL12/análisis , Nociceptores/química , Receptores CXCR4/análisis , Animales , Masculino , Nociceptores/ultraestructura , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Nervio Ciático/química , Médula Espinal/química
20.
J Neuroinflammation ; 9: 36, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22353423

RESUMEN

BACKGROUND: Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain. METHODS: We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for in vitro experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test. RESULTS: NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. In vitro, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1ß- and TNF-α-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-α-induced MMP-9 expression through ß1 integrin engagement. In vivo, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia. CONCLUSIONS: This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Inflamación/complicaciones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Dolor/etiología , Dolor/metabolismo , Análisis de Varianza , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células Cultivadas , Quimiocina CCL2/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Adyuvante de Freund , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Proteínas Inmediatas-Precoces/genética , Inflamación/inducido químicamente , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dolor/tratamiento farmacológico , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Médula Espinal/patología , Factores de Tiempo , Transfección , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA