Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 60(10): 993-998, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37080586

RESUMEN

BACKGROUND: Early-onset isolated systemic hypertension is a rare condition of unknown genetic origin. Renovascular, renal parenchymal diseases or aortic coarctation are the most common causes of secondary systemic hypertension in younger children and neonates. We investigated the genetic bases of early-onset isolated systemic hypertension. METHODS: Whole-exome sequencing (WES) was followed by variant filtering and Sanger sequencing for validation and familial segregation of selected variants in a large consanguineous family. mRNA expression was performed to evaluate the impact of the predicted pathogenic variant on gene expression. WES or Sanger sequencing was performed in additional unrelated affected individuals. RESULTS: In one consanguineous family with four children presenting with isolated neonatal-onset systemic hypertension, we identified homozygous stop-gain variant in the NPR1 gene (NM_000906.4:c.1159C>T (p.Arg387Ter)) in the affected individuals. This variant leads to a dramatic reduction of NPR1 RNA levels. NPR1 gene analysis of additional families allowed the identification of another family with two affected children carrying homozygous frameshift variant in NPR1 (NM_000906.4:c.175del (p.Val59TrpfsTer8)). CONCLUSION: We show for the first time that biallelic loss of function of NPR1 is responsible for isolated neonatal-onset systemic hypertension in humans, which represents a new autosomal recessive genetic cause of infantile systemic hypertension or cardiogenic shock. This is consistent with studies reporting early-onset systemic hypertension and sudden death in Npr1-deficient mice. NPR1 gene analysis should be therefore investigated in infants with early-onset systemic hypertension with or without cardiogenic shock of unknown origin.


Asunto(s)
Hipertensión , Enfermedades del Recién Nacido , Animales , Humanos , Recién Nacido , Ratones , Consanguinidad , Mutación del Sistema de Lectura , Homocigoto , Hipertensión/genética , Choque Cardiogénico
2.
Clin Genet ; 104(5): 587-592, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37431644

RESUMEN

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through whole-exome sequencing combined with arrayCGH from DNA of a fetus presenting with early onset AMC, we identified biallelic loss of function variants in Dystonin (DST): a stop gain variant (NM_001144769.5:c.12208G > T:p.(Glu4070Ter)) on the neuronal isoform and a 175 kb microdeletion including exons 25-96 of this isoform on the other allele [NC_000006.11:g.(56212278_56323554)_(56499398_56507586)del]. Transmission electron microscopy of the sciatic nerve revealed abnormal morphology of the peripheral nerve with severe hypomyelination associated with dramatic reduction of fiber density which highlights the critical role of DST in peripheral nerve axonogenesis during development in human. Variants in the neuronal isoforms of DST cause hereditary sensory and autonomic neuropathy which has been reported in several unrelated families with highly variable age of onset from fetal to adult onset. Our data enlarge the disease mechanisms of neurogenic AMC.


Asunto(s)
Artrogriposis , Neuropatías Hereditarias Sensoriales y Autónomas , Adulto , Humanos , Embarazo , Femenino , Artrogriposis/diagnóstico , Artrogriposis/genética , Distonina/genética , Isoformas de Proteínas
3.
Am J Med Genet A ; 188(8): 2331-2338, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35686685

RESUMEN

The recent finding that some patients with fetal akinesia deformation sequence (FADS) carry variants in the TUBB2B gene has prompted us to add to the existing literature a first description of two fetal FADS cases carrying TUBA1A variants. Hitherto, only isolated cortical malformations have been described with TUBA1A mutation, including microlissencephaly, lissencephaly, central pachygyria and polymicrogyria-like cortical dysplasia, generalized polymicrogyria cortical dysplasia, and/or the "simplified" gyral pattern. The neuropathology of our fetal cases shows several common features of tubulinopathies, in particular, the dysmorphism of the basal ganglia, as the most pathognomonic sign. The cortical ribbon anomalies were extremely severe and concordant with the complex cortical malformation. In conclusion, we broaden the phenotypic spectrum of TUBA1A variants, to include FADS.


Asunto(s)
Artrogriposis , Lisencefalia , Malformaciones del Desarrollo Cortical , Polimicrogiria , Artrogriposis/diagnóstico , Artrogriposis/genética , Humanos , Lisencefalia/genética , Malformaciones del Desarrollo Cortical/genética , Mutación , Tubulina (Proteína)/genética
4.
Prenat Diagn ; 42(9): 1073-1080, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35793434

RESUMEN

Vein of Galen aneurysmal malformation (VGAM) is a severe rare vascular anomaly whose prognosis depends on cerebral and cardiac consequences that can be hard to diagnose, let alone predict in utero. We performed an updated review to summarize current research on the genetics, ultrasound and MRI of VGAM that could help in the diagnosis and management of VGAM. Prenatal diagnosis of VGAM has greatly improved in recent years. Ultrasound allows in utero detection of VGAM in most cases now and is the best exam for prenatal cardiac evaluation. Tricuspid insufficiency is the only cardiac feature associated with poor prognosis. Cardiomegaly may indicate a risk of cardiac failure at birth and should prompt discussion of birth in a specialized facility. Ultrasound can identify constituted cerebral lesions, but MRI diagnoses early signs of cerebral hemodynamic changes, notably through the detection of pseudo-feeders. Genetic exploration should be proposed after VGAM diagnosis. Ultrasound and MRI are essential complementary tools for the diagnosis of VGAM, but also for prognostic evaluation, and provide information for the counseling of parents and optimal management of the pregnancy.


Asunto(s)
Venas Cerebrales , Malformaciones de la Vena de Galeno , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Embarazo , Diagnóstico Prenatal , Malformaciones de la Vena de Galeno/diagnóstico por imagen , Malformaciones de la Vena de Galeno/terapia
5.
J Med Genet ; 58(11): 737-742, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32928894

RESUMEN

BACKGROUND: Arthrogryposis multiplex congenita (AMC) is the direct consequence of reduced fetal movements. AMC includes a large spectrum of diseases which result from variants in genes encoding components required for the formation or the function of the neuromuscular system. AMC may also result from central nervous involvement. SCN1A encodes Nav1.1, a critical component of voltage-dependent sodium channels which underlie action potential generation and propagation. Variants of SCN1A are known to be responsible for Dravet syndrome, a severe early-onset epileptic encephalopathy. We report pathogenic heterozygous missense de novo variants in SCN1A in three unrelated individuals with AMC. METHODS: Whole-exome sequencing was performed from DNA of the index case of AMC families. Heterozygous missense variants in SCN1A (p.Leu893Phe, p.Ala989Thr, p.Ile236Thr) were identified in three patients. Sanger sequencing confirmed the variants and showed that they occurred de novo. RESULTS: AMC was diagnosed from the second trimester of pregnancy in the three patients. One of them developed drug-resistant epileptic seizures from birth. We showed that SCN1A is expressed in both brain and spinal cord but not in skeletal muscle during human development. The lack of motor denervation as established by electromyographic studies or pathological examination of the spinal cord or skeletal muscle in the affected individuals suggests that AMC is caused by brain involvement. CONCLUSION: We show for the first time that SCN1A variants are responsible for early-onset motor defect leading to AMC indicating a critical role of SCN1A in prenatal motor development and broadening the phenotypic spectrum of variants in SCN1A.


Asunto(s)
Artrogriposis/etiología , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.1/genética , Artrogriposis/genética , Femenino , Heterocigoto , Humanos , Masculino , Fenotipo , Embarazo , Secuenciación del Exoma
6.
Am J Hum Genet ; 100(4): 659-665, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28318499

RESUMEN

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through genetic mapping of disease loci and whole-exome sequencing in four unrelated multiplex families presenting with severe AMC, we identified biallelic loss-of-function mutations in LGI4 (leucine-rich glioma-inactivated 4). LGI4 is a ligand secreted by Schwann cells that regulates peripheral nerve myelination via its cognate receptor ADAM22 expressed by neurons. Immunolabeling experiments and transmission electron microscopy of the sciatic nerve from one of the affected individuals revealed a lack of myelin. Functional tests using affected individual-derived iPSCs showed that these germline mutations caused aberrant splicing of the endogenous LGI4 transcript and in a cell-based assay impaired the secretion of truncated LGI4 protein. This is consistent with previous studies reporting arthrogryposis in Lgi4-deficient mice due to peripheral hypomyelination. This study adds to the recent reports implicating defective axoglial function as a key cause of AMC.


Asunto(s)
Artrogriposis/genética , Proteínas de la Matriz Extracelular/genética , Mutación , Células de Schwann/metabolismo , Artrogriposis/diagnóstico , Artrogriposis/patología , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso , Linaje
7.
Hum Mol Genet ; 26(20): 3989-3994, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016857

RESUMEN

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development.


Asunto(s)
Artrogriposis/genética , Artrogriposis/metabolismo , Mutación del Sistema de Lectura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Colinérgicos/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Linaje , Transporte de Proteínas , Receptores Colinérgicos/genética , Mortinato/genética
8.
Am J Hum Genet ; 99(4): 928-933, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27616481

RESUMEN

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through linkage analysis, homozygosity mapping, and exome sequencing in four unrelated families affected by lethal AMC, we identified biallelic mutations in GLDN in the affected individuals. GLDN encodes gliomedin, a secreted cell adhesion molecule involved in the formation of the nodes of Ranvier. Transmission electron microscopy of the sciatic nerve from one of the affected individuals showed a marked lengthening defect of the nodes. The GLDN mutations found in the affected individuals abolish the cell surface localization of gliomedin and its interaction with its axonal partner, neurofascin-186 (NF186), in a cell-based assay. The axoglial contact between gliomedin and NF186 is essential for the initial clustering of Na+ channels at developing nodes. These results indicate a major role of gliomedin in node formation and the development of the peripheral nervous system in humans. These data indicate that mutations of GLDN or CNTNAP1 (MIM: 616286), encoding essential components of the nodes of Ranvier and paranodes, respectively, lead to inherited nodopathies, a distinct disease entity among peripheral neuropathies.


Asunto(s)
Artrogriposis/genética , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Nódulos de Ranvier/metabolismo , Alelos , Axones/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Exoma/genética , Femenino , Muerte Fetal , Humanos , Recién Nacido , Masculino , Proteínas de la Membrana/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Linaje , Unión Proteica/genética , Nódulos de Ranvier/ultraestructura
9.
Brain ; 141(4): 979-988, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444212

RESUMEN

See Meschia (doi:10.1093/brain/awy066) for a scientific commentary on this article.Vein of Galen aneurysmal malformation is a congenital anomaly of the cerebral vasculature representing 30% of all paediatric vascular malformations. We conducted whole exome sequencing in 19 unrelated patients presenting this malformation and subsequently screened candidate genes in a cohort of 32 additional patients using either targeted exome or Sanger sequencing. In a cohort of 51 patients, we found five affected individuals with heterozygous mutations in EPHB4 including de novo frameshift (p.His191Alafs*32) or inherited deleterious splice or missense mutations predicted to be pathogenic by in silico tools. Knockdown of ephb4 in zebrafish embryos leads to specific anomalies of dorsal cranial vessels including the dorsal longitudinal vein, which is the orthologue of the median prosencephalic vein and the embryonic precursor of the vein of Galen. This model allowed us to investigate EPHB4 loss-of-function mutations in this disease by the ability to rescue the brain vascular defect in knockdown zebrafish co-injected with wild-type, but not truncated EPHB4, mimicking the p.His191Alafs mutation. Our data showed that in both species, loss of function mutations of EPHB4 result in specific and similar brain vascular development anomalies. Recently, EPHB4 germline mutations have been reported in non-immune hydrops fetalis and in cutaneous capillary malformation-arteriovenous malformation. Here, we show that EPHB4 mutations are also responsible for vein of Galen aneurysmal malformation, indicating that heterozygous germline mutations of EPHB4 result in a large clinical spectrum. The identification of EPHB4 pathogenic mutations in patients presenting capillary malformation or vein of Galen aneurysmal malformation should lead to careful follow-up of pregnancy of carriers for early detection of anomaly of the cerebral vasculature in order to propose optimal neonatal care. Endovascular embolization indeed greatly improved the prognosis of patients.


Asunto(s)
Mutación/genética , Receptor EphB4/genética , Malformaciones de la Vena de Galeno/genética , Angiografía de Substracción Digital , Animales , Animales Modificados Genéticamente , Estudios de Cohortes , Nervios Craneales/anomalías , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Embrión no Mamífero , Femenino , Edad Gestacional , Humanos , Imagen por Resonancia Magnética , Masculino , Oligodesoxirribonucleótidos Antisentido/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor EphB4/metabolismo , Malformaciones de la Vena de Galeno/diagnóstico por imagen , Secuenciación del Exoma , Pez Cebra
10.
Am J Hum Genet ; 97(4): 616-20, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26365340

RESUMEN

Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene.


Asunto(s)
Artrogriposis/genética , Cromosomas Humanos Par 15/genética , Feto/metabolismo , Mutación/genética , Síndrome de Prader-Willi/genética , Proteínas/genética , Estudios de Casos y Controles , Femenino , Feto/patología , Perfilación de la Expresión Génica , Impresión Genómica , Humanos , Recién Nacido , Masculino , Linaje , Análisis de Secuencia de ADN
11.
Am J Hum Genet ; 96(6): 955-61, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26004201

RESUMEN

Arthrogryposis multiplex congenita is defined by the presence of contractures across two or more major joints and results from reduced or absent fetal movement. Here, we present three consanguineous families affected by lethal arthrogryposis multiplex congenita. By whole-exome or targeted exome sequencing, it was shown that the probands each harbored a different homozygous mutation (one missense, one nonsense, and one frameshift mutation) in GPR126. GPR126 encodes G-protein-coupled receptor 126, which has been shown to be essential for myelination of axons in the peripheral nervous system in fish and mice. A previous study reported that Gpr126(-/-) mice have a lethal arthrogryposis phenotype. We have shown that the peripheral nerves in affected individuals from one family lack myelin basic protein, suggesting that this disease in affected individuals is due to defective myelination of the peripheral axons during fetal development. Previous work has suggested that autoproteolytic cleavage is important for activating GPR126 signaling, and our biochemical assays indicated that the missense substitution (p.Val769Glu [c.2306T>A]) impairs autoproteolytic cleavage of GPR126. Our data indicate that GPR126 is critical for myelination of peripheral nerves in humans. This study adds to the literature implicating defective axoglial function as a key cause of severe arthrogryposis multiplex congenita and suggests that GPR126 mutations should be investigated in individuals affected by this disorder.


Asunto(s)
Artrogriposis/genética , Artrogriposis/patología , Mutación Missense/genética , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , Secuencia de Bases , Exoma/genética , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular , Fibras Nerviosas Mielínicas/patología , Linaje , Alineación de Secuencia , Análisis de Secuencia de ADN
12.
Am J Med Genet A ; 173(1): 62-71, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27615324

RESUMEN

Neutropenia can be qualified as congenital when of neonatal onset or when associated with extra-hematopoietic manifestations. Overall, 30% of patients with congenital neutropenia (CN) remain without a molecular diagnosis after a multidisciplinary consultation and tedious diagnostic strategy. In the rare situations when neutropenia is identified and associated with intellectual disability (ID), there are few diagnostic hypotheses to test. This retrospective multicenter study reports on a clinically heterogeneous cohort of 10 unrelated patients with CN associated with ID and no molecular diagnosis prior to whole-exome sequencing (WES). WES provided a diagnostic yield of 40% (4/10). The results suggested that in many cases neutropenia and syndromic manifestations could not be assigned to the same molecular alteration. Three sub-groups of patients were highlighted: (i) severe, symptomatic chronic neutropenia, detected early in life, and related to a known mutation in the CN spectrum (ELANE); (ii) mild to moderate benign intermittent neutropenia, detected later, and associated with mutations in genes implicated in neurodevelopmental disorders (CHD2, HUWE1); and (iii) moderate to severe intermittent neutropenia as a probably undiagnosed feature of a newly reported syndrome (KAT6A). Unlike KAT6A, which seems to be associated with a syndromic form of CN, the other reported mutations may not explain the entire clinical picture. Although targeted gene sequencing can be discussed for the primary diagnosis of severe CN, we suggest that performing WES for the diagnosis of disorders associating CN with ID will not only provide the etiological diagnosis but will also pave the way towards personalized care and follow-up. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Neutropenia/congénito , Adolescente , Biomarcadores , Niño , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Neutropenia/diagnóstico , Neutropenia/genética , Fenotipo , Estudios Retrospectivos , Síndrome
13.
Hum Mol Genet ; 23(7): 1916-22, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24234648

RESUMEN

Genome-wide association studies have been successful in identifying common variants that influence the susceptibility to complex diseases. From these studies, it has emerged that there is substantial overlap in susceptibility loci between diseases. In line with those findings, we hypothesized that shared genetic pathways may exist between multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). While both diseases may have inflammatory and neurodegenerative features, epidemiological studies have indicated an increased co-occurrence within individuals and families. To this purpose, we combined genome-wide data from 4088 MS patients, 3762 ALS patients and 12 030 healthy control individuals in whom 5 440 446 single-nucleotide polymorphisms (SNPs) were successfully genotyped or imputed. We tested these SNPs for the excess association shared between MS and ALS and also explored whether polygenic models of SNPs below genome-wide significance could explain some of the observed trait variance between diseases. Genome-wide association meta-analysis of SNPs as well as polygenic analyses fails to provide evidence in favor of an overlap in genetic susceptibility between MS and ALS. Hence, our findings do not support a shared genetic background of common risk variants in MS and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Comorbilidad , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple
14.
Hum Mol Genet ; 23(8): 2220-31, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24256812

RESUMEN

Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (∼90%) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P = 1.11 × 10(-8); OR 0.82) that was validated when combined with genotype data from a replication cohort (P = 8.62 × 10(-9); OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P = 7.69 × 10(-9); OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as ∼12% using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Cromosomas Humanos Par 17/genética , Estudio de Asociación del Genoma Completo , Estudios de Casos y Controles , Humanos , Pronóstico
15.
Hum Mol Genet ; 22(8): 1483-92, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23236030

RESUMEN

Distal arthrogryposis (DA) is a heterogeneous subgroup of arthrogryposis multiplex congenita (AMC), a large family of disorders characterized by multiple congenital joint limitations due to reduced fetal movements. DA is mainly characterized by contractures afflicting especially the distal extremities without overt muscular or neurological signs. Although a limited number of genes mostly implicated in the contractile apparatus have been identified in DA, most patients failed to show mutations in currently known genes. Using a pangenomic approach, we demonstrated linkage of DA to chromosome 2q37 in two consanguineous families and the endothelin-converting enzyme like 1 (ECEL1) gene present in this region was associated with DA. Screening of a panel of 20 families with non-specific DA identified seven homozygous or compound heterozygous mutations of ECEL1 in a total of six families. Mutations resulted mostly in the absence of protein. ECEL1 is a neuronal endopeptidase predominantly expressed in the central nervous system and brain structures during fetal life in mice and human. ECEL1 plays a major role in intramuscular axonal branching of motor neurons in skeletal muscle during embryogenesis. A detailed review of clinical findings of DA patients with ECEL1 mutations revealed a homogeneous and recognizable phenotype characterized by limited knee flexion, flexed third to fifth fingers and severe muscle atrophy predominant on lower limbs and tongue that suggested a common pathogenic mechanism. We described a new and homogenous phenotype of DA associated with ECEL1 that resulted in symptoms involving rather the peripheral than the central nervous system and suggesting a developmental dysfunction.


Asunto(s)
Artrogriposis/genética , Desarrollo Embrionario/genética , Metaloendopeptidasas/genética , Animales , Artrogriposis/embriología , Artrogriposis/patología , Sistema Nervioso Central/patología , Mapeo Cromosómico , Consanguinidad , Genes Recesivos , Ligamiento Genético , Homocigoto , Humanos , Ratones , Neuronas Motoras/patología , Mutación , Linaje , Fenotipo
16.
Am J Hum Genet ; 91(1): 5-14, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22703880

RESUMEN

Spinal muscular atrophy (SMA) is a clinically and genetically heterogeneous disease characterized by the degeneration of lower motor neurons. The most frequent form is linked to mutations in SMN1. Childhood SMA associated with progressive myoclonic epilepsy (SMA-PME) has been reported as a rare autosomal-recessive condition unlinked to mutations in SMN1. Through linkage analysis, homozygosity mapping, and exome sequencing in three unrelated SMA-PME-affected families, we identified a homozygous missense mutation (c.125C>T [p.Thr42Met]) in exon 2 of ASAH1 in the affected children of two families and the same mutation associated with a deletion of the whole gene in the third family. Expression studies of the c.125C>T mutant cDNA in Farber fibroblasts showed that acid-ceramidase activity was only 32% of that generated by normal cDNA. This reduced activity was able to normalize the ceramide level in Farber cells, raising the question of the pathogenic mechanism underlying the CNS involvement in deficient cells. Morpholino knockdown of the ASAH1 ortholog in zebrafish led to a marked loss of motor-neuron axonal branching, a loss that is associated with increased apoptosis in the spinal cord. Our results reveal a wide phenotypic spectrum associated with ASAH1 mutations. An acid-ceramidase activity below 10% results in Farber disease, an early-onset disease starting with subcutaneous lipogranulomata, joint pain, and hoarseness of the voice, whereas a higher residual activity might be responsible for SMA-PME, a later-onset phenotype restricted to the CNS and starting with lower-motor-neuron disease.


Asunto(s)
Ceramidasa Ácida/genética , Mutación , Atrofias Musculares Espinales de la Infancia/genética , Adolescente , Animales , Niño , Preescolar , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Epilepsias Mioclónicas Progresivas/genética , Linaje , Pez Cebra
18.
Ann Neurol ; 76(1): 120-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24931836

RESUMEN

OBJECTIVE: Substantial clinical, pathological, and genetic overlap exists between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 inclusions have been found in both ALS and FTD cases (FTD-TDP). Recently, a repeat expansion in C9orf72 was identified as the causal variant in a proportion of ALS and FTD cases. We sought to identify additional evidence for a common genetic basis for the spectrum of ALS-FTD. METHODS: We used published genome-wide association studies data for 4,377 ALS patients and 13,017 controls, and 435 pathology-proven FTD-TDP cases and 1,414 controls for genotype imputation. Data were analyzed in a joint meta-analysis, by replicating topmost associated hits of one disease in the other, and by using a conservative rank products analysis, allocating equal weight to ALS and FTD-TDP sample sizes. RESULTS: Meta-analysis identified 19 genome-wide significant single nucleotide polymorphisms (SNPs) in C9orf72 on chromosome 9p21.2 (lowest p = 2.6 × 10(-12) ) and 1 SNP in UNC13A on chromosome 19p13.11 (p = 1.0 × 10(-11) ) as shared susceptibility loci for ALS and FTD-TDP. Conditioning on the 9p21.2 genotype increased statistical significance at UNC13A. A third signal, on chromosome 8q24.13 at the SPG8 locus coding for strumpellin (p = 3.91 × 10(-7) ) was replicated in an independent cohort of 4,056 ALS patients and 3,958 controls (p = 0.026; combined analysis p = 1.01 × 10(-7) ). INTERPRETATION: We identified common genetic variants in C9orf72, but in addition in UNC13A that are shared between ALS and FTD. UNC13A provides a novel link between ALS and FTD-TDP, and identifies changes in neurotransmitter release and synaptic function as a converging mechanism in the pathogenesis of ALS and FTD-TDP.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Proteína C9orf72 , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 9/genética , Expansión de las Repeticiones de ADN/genética , Estudio de Asociación del Genoma Completo/tendencias , Humanos , Mutación , Polimorfismo de Nucleótido Simple/genética
19.
Blood ; 122(25): 4068-76, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24159176

RESUMEN

Several autoimmune diseases, including primary Sjögren's syndrome (pSS), are associated with an increased risk for lymphoma. Polymorphisms of TNFAIP3, which encodes the A20 protein that plays a key role in controlling nuclear factor κB activation, have been associated with several autoimmune diseases. Somatic mutations of TNFAIP3 have been observed in the mucosa-associated lymphoid tissue lymphoma subtype frequently associated with pSS. We studied germline and somatic abnormalities of TNFAIP3 in 574 patients with pSS, including 25 with lymphoma. Nineteen additional patients with pSS and lymphoma were available for exome sequence analysis. Functional abnormalities of A20 were assessed by gene reporter assays. The rs2230926 exonic variant was associated with an increased risk for pSS complicated by lymphoma (odds ratio, 3.36 [95% confidence interval, 1.34-8.42], and odds ratio, 3.26 [95% confidence interval, 1.31-8.12], vs controls and pSS patients without lymphoma, respectively; P = .011). Twelve (60%) of the 20 patients with paired germline and lymphoma TNFAIP3 sequence data had functional abnormalities of A20: 6 in germline DNA, 5 in lymphoma DNA, and 1 in both. The frequency was even higher (77%) among pSS patients with mucosa-associated lymphoid tissue lymphoma. Some of these variants showed impaired control of nuclear factor κB activation. These results support a key role for germline and somatic variations of A20 in the transformation between autoimmunity and lymphoma.


Asunto(s)
Proteínas de Unión al ADN/genética , Exones , Mutación de Línea Germinal , Péptidos y Proteínas de Señalización Intracelular/genética , Linfoma de Células B de la Zona Marginal/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple , Síndrome de Sjögren/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B de la Zona Marginal/complicaciones , Linfoma de Células B de la Zona Marginal/tratamiento farmacológico , Linfoma de Células B de la Zona Marginal/metabolismo , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Estudios Prospectivos , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa
20.
Stem Cells ; 30(8): 1675-84, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22644669

RESUMEN

Mutations in the survival of motor neuron gene (SMN1) are responsible for spinal muscular atrophy, a fatal neuromuscular disorder. Mice carrying a homozygous deletion of Smn exon 7 directed to skeletal muscle (HSA-Cre, Smn(F7/F7) mice) present clinical features of human muscular dystrophies for which new therapeutic approaches are highly warranted. Herein we demonstrate that tail vein transplantation of mouse amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. Second, after cardiotoxin injury of the Tibialis Anterior, only AFS-transplanted mice efficiently regenerate. Most importantly, secondary transplants of satellite cells (SCs) derived from treated mice show that AFS cells integrate into the muscle stem cell compartment and have long-term muscle regeneration capacity indistinguishable from that of wild-type-derived SC. This is the first study demonstrating the functional and stable integration of AFS cells into the skeletal muscle, highlighting their value as cell source for the treatment of muscular dystrophies.


Asunto(s)
Líquido Amniótico/citología , Músculo Esquelético/citología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/cirugía , Nicho de Células Madre/fisiología , Trasplante de Células Madre/métodos , Células Madre/citología , Líquido Amniótico/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Distribución Aleatoria , Células Madre/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA