Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurobiol Dis ; 191: 106398, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182075

RESUMEN

Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Núcleo Subtalámico , Ratas , Animales , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Glutamina/metabolismo , Trastornos Parkinsonianos/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Glutamatos/metabolismo , Oxidopamina/farmacología
2.
J Neurochem ; 136(5): 1004-16, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26576509

RESUMEN

The long-term effects and action mechanisms of subthalamic nucleus (STN) high-frequency stimulation (HFS) for Parkinson's disease still remain poorly characterized, mainly due to the lack of experimental models relevant to clinical application. To address this issue, we performed a multilevel study in freely moving hemiparkinsonian rats undergoing 5-week chronic STN HFS, using a portable constant-current microstimulator. In vivo metabolic neuroimaging by (1) H-magnetic resonance spectroscopy (11.7 T) showed that STN HFS normalized the tissue levels of the neurotransmission-related metabolites glutamate, glutamine and GABA in both the striatum and substantia nigra reticulata (SNr), which were significantly increased in hemiparkinsonian rats, but further decreased nigral GABA levels below control values; taurine levels, which were not affected in hemiparkinsonian rats, were significantly reduced. Slice electrophysiological recordings revealed that STN HFS was, uniquely among antiparkinsonian treatments, able to restore both forms of corticostriatal synaptic plasticity, i.e. long-term depression and potentiation, which were impaired in hemiparkinsonian rats. Behavior analysis (staircase test) showed a progressive recovery of motor skill during the stimulation period. Altogether, these data show that chronic STN HFS efficiently counteracts metabolic and synaptic defects due to dopaminergic lesion in both the striatum and SNr. Comparison of chronic STN HFS with acute and subchronic treatment further suggests that the long-term benefits of this treatment rely both on the maintenance of acute effects and on delayed actions on the basal ganglia network. We studied the effects of chronic (5 weeks) continuous subthalamic nucleus (STN) high-frequency stimulation (HFS) in hemiparkinsonian rats. The levels of glutamate and GABA in the striatum () and substantia nigra reticulata (SNr) (), measured by in vivo proton magnetic resonance spectroscopy ((1) H-MRS), were increased by 6-hydroxydopamine (6-OHDA) lesion, which also disrupted corticostriatal synaptic plasticity () and impaired forepaw skill () in the staircase test. Five-week STN HFS normalized glutamate and GABA levels and restored both synaptic plasticity and motor function. A partial behavioral recovery was observed at 2-week STN HFS.


Asunto(s)
Ganglios Basales/metabolismo , Conducta Animal/efectos de los fármacos , Estimulación Encefálica Profunda , Plasticidad Neuronal/efectos de los fármacos , Sustancia Negra/metabolismo , Núcleo Subtalámico/metabolismo , Animales , Ganglios Basales/fisiopatología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Estimulación Encefálica Profunda/métodos , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Oxidopamina/farmacología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Ratas , Sustancia Negra/fisiopatología , Núcleo Subtalámico/fisiopatología , Tiempo
3.
J Neurosci ; 34(24): 8318-23, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920634

RESUMEN

The heparan sulfate proteoglycan Glypican 4 (Gpc4) is strongly expressed in mouse embryonic stem (ES) cells where it controls the maintenance of self-renewal by modulating Wnt/ß-catenin signaling activities. Here we show that mouse ES cells carrying a hypomorphic Gpc4 allele, in a single-step neuronal differentiation protocol, show increased differentiation into dopaminergic neurons expressing tyrosine hydroxylase (TH) and nuclear receptor related-1 protein (Nurr1) 1. In contrast to wild-type cells, these differentiating Gpc4-mutant cells expressed high levels of DOPA decarboxylase and the dopamine transporter, two markers expressed by fully mature dopaminergic neurons. Intrastriatal transplantation of Gpc4 hypomorphic cells into a 6-OHDA rat model for Parkinson's disease improved motor behavior in the cylinder test and amphetamine-induced rotations at a higher level than transplanted wild-type cells. Importantly, Gpc4 hypomorphic cell grafts, in contrast to wild-type cells, did not generate teratomas in the host brains, leading to strongly enhanced animal survival. Therefore, control of Gpc4 activity level represents a new potential strategy to reduce ES cell tumorigenic features while at the same time increasing neuronal differentiation and integration.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Células Madre Embrionarias/trasplante , Glipicanos/metabolismo , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/cirugía , Teratoma/prevención & control , Animales , Calbindinas/metabolismo , Recuento de Células , Diferenciación Celular , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Glipicanos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Ratas , Receptores de Dopamina D2/metabolismo , Recuperación de la Función/fisiología , Teratoma/etiología , Tirosina 3-Monooxigenasa/metabolismo
4.
J Neurochem ; 132(6): 703-12, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25533782

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non-invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN-DBS in control and parkinsonian (6-hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN-DBS has duration-dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition. Non-invasive metabolic neuroimaging might be useful to understand the physiological mechanisms of deep brain stimulation (DBS). Here, we demonstrate the feasibility of repeated high-field proton magnetic resonance spectroscopy of basal ganglia structures under subthalamic nucleus DBS in control and parkinsonian rats. Results show that DBS has both rapid and delayed effects either dependent or independent of disease state.


Asunto(s)
Ganglios Basales/metabolismo , Estimulación Encefálica Profunda/tendencias , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/terapia , Núcleo Subtalámico/metabolismo , Núcleo Subtalámico/cirugía , Animales , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
5.
Neurobiol Dis ; 65: 69-81, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24480091

RESUMEN

Parkinson's disease (PD) is characterized by the progressive degeneration of substantia nigra (SN) dopamine neurons, involving a multifactorial cascade of pathogenic events. Here we explored the hypothesis that dysfunction of excitatory amino acid transporters (EAATs) might be involved. Acutely-induced dysfunction of EAATs in the rat SN, by single unilateral injection of their substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC), triggers a neurodegenerative process mimicking several PD features. Dopamine neurons are selectively affected, consistent with their sustained excitation by PDC measured by slice electrophysiology. The anti-oxidant N-acetylcysteine and the NMDA receptor antagonists ifenprodil and memantine provide neuroprotection. Besides oxidative stress and NMDA receptor-mediated excitotoxicity, glutathione depletion and neuroinflammation characterize the primary insult. Most interestingly, the degeneration progresses overtime with unilateral to bilateral and caudo-rostral evolution. Transient adaptive changes in dopamine function markers in SN and striatum accompany cell loss and axonal dystrophy, respectively. Motor deficits appear when neuron loss exceeds 50% in the most affected SN and striatal dopamine tone is dramatically reduced. These findings outline a functional link between EAAT dysfunction and several PD pathogenic mechanisms/pathological hallmarks, and provide a novel acutely-triggered model of progressive Parkinsonism.


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Sustancia Negra/metabolismo , Acetilcisteína/uso terapéutico , Potenciales de Acción/efectos de los fármacos , Animales , Ácidos Dicarboxílicos/toxicidad , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Miembro Anterior/fisiopatología , Depuradores de Radicales Libres/uso terapéutico , Lateralidad Funcional , Glutamato Descarboxilasa/metabolismo , Técnicas In Vitro , Masculino , Actividad Motora/efectos de los fármacos , Neuroglía/patología , Inhibidores de la Captación de Neurotransmisores/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Pirrolidinas/toxicidad , Ratas , Ratas Wistar , Sustancia Negra/efectos de los fármacos , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
6.
Cell Rep ; 40(1): 111034, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793632

RESUMEN

Striatal cholinergic interneurons (CINs) respond to salient or reward prediction-related stimuli after conditioning with brief pauses in their activity, implicating them in learning and action selection. This pause is lost in animal models of Parkinson's disease. How this signal regulates the striatal network remains an open question. Here, we examine the impact of CIN firing inhibition on glutamatergic transmission between the cortex and the medium spiny neurons expressing dopamine D1 receptor (D1 MSNs). Brief interruption of CIN activity has no effect in control conditions, whereas it increases glutamatergic responses in D1 MSNs after dopamine denervation. This potentiation depends upon M4 muscarinic receptor and protein kinase A. Decreasing CIN firing by optogenetics/chemogenetics in vivo partially rescues long-term potentiation in MSNs and motor learning deficits in parkinsonian mice. Our findings demonstrate that the control exerted by CINs on corticostriatal transmission and striatal-dependent motor-skill learning depends on the integrity of dopaminergic inputs.


Asunto(s)
Interneuronas , Trastornos Parkinsonianos , Animales , Colinérgicos/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Interneuronas/metabolismo , Ratones , Neuronas/metabolismo , Trastornos Parkinsonianos/metabolismo
7.
J Neurosci ; 30(29): 9919-28, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20660274

RESUMEN

The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pf in rodents, is proposed as an interesting target for the neurosurgical treatment of movement disorders, including Parkinson's disease. In this study, we examined the functional impact of subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had significant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the cellular level, Pf-HFS partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and preprodynorphin). Pf-HFS totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of Pf-HFS evidenced here demonstrate that CM/Pf is an important node for modulating the pathophysiological functioning of basal ganglia and related disorders.


Asunto(s)
Ganglios Basales/patología , Ganglios Basales/fisiopatología , Estimulación Encefálica Profunda , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Tálamo/fisiopatología , Animales , Desnervación/métodos , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Retroalimentación Sensorial , Globo Pálido/metabolismo , Levodopa/administración & dosificación , Levodopa/metabolismo , Masculino , Oxidopamina , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson Secundaria/inducido químicamente , Precursores de Proteínas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Sustancia Negra/metabolismo , Núcleo Subtalámico/metabolismo , Taquicininas/genética
8.
Neurobiol Dis ; 42(3): 284-91, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21296669

RESUMEN

Chronic high frequency stimulation of the subthalamic nucleus (STN-HFS) efficiently alleviates motor symptoms of advanced Parkinson's disease (PD). Here, we looked for possible STN-HFS-induced changes on adult brain neurogenesis in the hippocampus and olfactory bulb that may be related to non-motor deficits associated to PD, such as mood disorders and olfaction deficits. Cell proliferation (Ki-67 immuno-positive-cells) and survival (bromodeoxyuridine (BrdU)-immuno-positive cells) were assessed in the subventricular zone-olfactory bulb continuum and the dentate gyrus of the hippocampus of hemiparkinsonian rats with or without continuous STN-HFS for 8 days. Dopamine lesion impaired cell proliferation and survival through different mechanisms, the effect on proliferation being correlated to the level of dopamine depletion whereas the effect on survival was not. Prolonged STN-HFS did not affect cell proliferation, but increased cell survival bilaterally. In these regions of constitutive neurogenesis, the percentage of new neuroblasts (BrdU-doublecortin-positive cells) was unchanged, suggesting that STN-HFS can lead to a net increase in newly formed neurons later on. STN-HFS also increased new cell survival in the striatum and promoted dopamine system recovery detected by tyrosine hydroxylase immunostaining. These data provide the first evidence that prolonged STN-HFS has a neurorestorative action and support the view that the action of this neurosurgical treatment can bypass the cortico-basal ganglia-thalamocortical loop circuits and largely impinge neuroplasticity and brain function.


Asunto(s)
Neurogénesis/fisiología , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Análisis de Varianza , Animales , Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Dopamina/metabolismo , Proteína Doblecortina , Electrodos Implantados , Inmunohistoquímica , Masculino , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Wistar , Núcleo Subtalámico/metabolismo
9.
Cell Death Dis ; 12(5): 460, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966044

RESUMEN

TP53INP1 is a stress-induced protein, which acts as a dual positive regulator of transcription and of autophagy and whose deficiency has been linked with cancer and metabolic syndrome. Here, we addressed the unexplored role of TP53INP1 and of its Drosophila homolog dDOR in the maintenance of neuronal homeostasis under chronic stress, focusing on dopamine (DA) neurons under normal ageing- and Parkinson's disease (PD)-related context. Trp53inp1-/- mice displayed additional loss of DA neurons in the substantia nigra compared to wild-type (WT) mice, both with ageing and in a PD model based on targeted overexpression of α-synuclein. Nigral Trp53inp1 expression of WT mice was not significantly modified with ageing but was markedly increased in the PD model. Trp53inp2 expression showed similar evolution and did not differ between WT and Trp53inp1-/- mice. In Drosophila, pan-neuronal dDOR overexpression improved survival under paraquat exposure and mitigated the progressive locomotor decline and the loss of DA neurons caused by the human α-synuclein A30P variant. dDOR overexpression in DA neurons also rescued the locomotor deficit in flies with RNAi-induced downregulation of dPINK1 or dParkin. Live imaging, confocal and electron microscopy in fat bodies, neurons, and indirect flight muscles showed that dDOR acts as a positive regulator of basal autophagy and mitophagy independently of the PINK1-mediated pathway. Analyses in a mammalian cell model confirmed that modulating TP53INP1 levels does not impact mitochondrial stress-induced PINK1/Parkin-dependent mitophagy. These data provide the first evidence for a neuroprotective role of TP53INP1/dDOR and highlight its involvement in the regulation of autophagy and mitophagy in neurons.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Choque Térmico/metabolismo , Neuroprotección/genética , Enfermedad de Parkinson/genética , Estrés Fisiológico/genética , Factores de Edad , Animales , Humanos , Ratones
10.
Stem Cells Transl Med ; 10(5): 725-742, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33528918

RESUMEN

Enhancing the differentiation potential of human induced pluripotent stem cells (hiPSC) into disease-relevant cell types is instrumental for their widespread application in medicine. Here, we show that hiPSCs downregulated for the signaling modulator GLYPICAN-4 (GPC4) acquire a new biological state characterized by increased hiPSC differentiation capabilities toward ventral midbrain dopaminergic (VMDA) neuron progenitors. This biological trait emerges both in vitro, upon exposing cells to VMDA neuronal differentiation signals, and in vivo, even when transplanting hiPSCs at the extreme conditions of floor-plate stage in rat brains. Moreover, it is compatible with the overall neuronal maturation process toward acquisition of substantia nigra neuron identity. HiPSCs with downregulated GPC4 also retain self-renewal and pluripotency in stemness conditions, in vitro, while losing tumorigenesis in vivo as assessed by flank xenografts. In conclusion, our results highlight GPC4 downregulation as a powerful approach to enhance generation of VMDA neurons. Outcomes may contribute to establish hiPSC lines suitable for translational applications.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas , Glipicanos , Células Madre Pluripotentes Inducidas , Animales , Células Cultivadas , Neuronas Dopaminérgicas/citología , Regulación hacia Abajo , Glipicanos/genética , Xenoinjertos , Humanos , Células Madre Pluripotentes Inducidas/citología , Mesencéfalo , Células-Madre Neurales/citología , Ratas
11.
Eur J Neurosci ; 32(3): 423-34, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20673310

RESUMEN

Dyskinesia is a major side-effect of chronic l-DOPA administration, the reference treatment for Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing the L-DOPA requirement. However, inappropriate stimulation can also trigger dyskinetic movements, in both human and rodents. We investigated whether STN-HFS-evoked forelimb dyskinesia involved changes in glutamatergic neurotransmission as previously reported for L-DOPA-induced dyskinesias, focusing on the role of NR2B-containing N-methyl-D-aspartate receptors (NR2B/NMDARs). We applied STN-HFS in normal rats at intensities above and below the threshold for triggering forelimb dyskinesia. Dyskinesiogenic STN-HFS induced the activation of NR2B (as assessed by immunodetection of the phosphorylated residue Tyr(1472)) in neurons of the subthalamic nucleus, entopeduncular nucleus, motor thalamus and forelimb motor cortex. The severity of STN-HFS-induced forelimb dyskinesia was decreased in a dose-dependent manner by systemic injections of CP-101,606, a selective blocker of NR2B/NMDARs, but was either unaffected or increased by the non-selective N-methyl-D-aspartate receptor antagonist, MK-801.


Asunto(s)
Discinesias/fisiopatología , Miembro Anterior/fisiopatología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Subtalámico/fisiopatología , Análisis de Varianza , Animales , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Discinesias/metabolismo , Estimulación Eléctrica , Electrodos Implantados , Miembro Anterior/efectos de los fármacos , Miembro Anterior/metabolismo , Inmunohistoquímica , Masculino , Corteza Motora/metabolismo , Neuronas/efectos de los fármacos , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Estadísticas no Paramétricas , Núcleo Subtalámico/efectos de los fármacos , Núcleo Subtalámico/metabolismo , Tálamo/metabolismo
12.
J Neurochem ; 109(4): 1096-105, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19519781

RESUMEN

Alterations of striatal synaptic transmission have been associated with several motor disorders involving the basal ganglia, such as Parkinson's disease. For this reason, we investigated the role of group-III metabotropic glutamate (mGlu) receptors in regulating synaptic transmission in the striatum by electrophysiological recordings and by using our novel orthosteric agonist (3S)-3-[(3-amino-3-carboxypropyl(hydroxy)phosphinyl)-hydroxymethyl]-5-nitrothiophene (LSP1-3081) and l-2-amino-4-phosphonobutanoate (L-AP4). Here, we show that both drugs dose-dependently reduced glutamate- and GABA-mediated post-synaptic potentials, and increased the paired-pulse ratio. Moreover, they decreased the frequency, but not the amplitude, of glutamate and GABA spontaneous and miniature post-synaptic currents. Their inhibitory effect was abolished by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine and was lost in slices from mGlu4 knock-out mice. Furthermore, (S)-3,4-dicarboxyphenylglycine did not affect glutamate and GABA transmission. Finally, intrastriatal LSP1-3081 or L-AP4 injection improved akinesia measured by the cylinder test. These results demonstrate that mGlu4 receptor selectively modulates striatal glutamate and GABA synaptic transmission, suggesting that it could represent an interesting target for selective pharmacological intervention in movement disorders involving basal ganglia circuitry.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Ácido Glutámico/fisiología , Neostriado/fisiología , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/fisiopatología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Aminobutiratos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Electrofisiología , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Agonistas del GABA/farmacología , Masculino , Movimiento/efectos de los fármacos , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Simpaticolíticos , Tetrodotoxina/farmacología
13.
Neurobiol Dis ; 36(1): 116-25, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19615446

RESUMEN

Subthalamic nucleus high frequency stimulation (STN-HFS) efficiently alleviates L-DOPA-sensitive parkinsonian motor symptoms, but has no direct beneficial action on L-DOPA-induced dyskinesias (LID). Here, we provide evidence that anti-akinetic STN-HFS or dyskinesiogenic L-DOPA similarly reversed the dopamine lesion-induced increases in gene expression of cytochrome oxidase subunit I (CoI), a metabolic marker of neuronal activity, in the globus pallidus, STN and substantia nigra pars reticulata (SNr) in rats. In contrast, in entopeduncular nucleus (EP), STN-HFS did not modify the lesion-induced increase in CoI mRNA levels, whereas L-DOPA induced a marked decrease versus control. Combining the two treatments did not reveal significant interaction. Interestingly, CoI gene expression in EP but not in SNr was inversely correlated with striatal preprodynorphin mRNA level, a LID marker. This work suggests the existence of two functional basal ganglia subcircuits: the one, including STN and SNr, involved in antiparkinsonian action, and the other, including EP, preferentially involved in LID.


Asunto(s)
Antiparkinsonianos/efectos adversos , Antiparkinsonianos/farmacología , Ganglios Basales/patología , Discinesia Inducida por Medicamentos/patología , Levodopa/farmacología , Red Nerviosa/patología , Trastornos Parkinsonianos/patología , Animales , Ganglios Basales/efectos de los fármacos , Modelos Animales de Enfermedad , Dinorfinas/genética , Dinorfinas/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/terapia , Estimulación Eléctrica/métodos , Electrodos Implantados , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Levodopa/efectos adversos , Masculino , Red Nerviosa/efectos de los fármacos , Oxidopamina/efectos adversos , Oxidopamina/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/terapia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
14.
Neurobiol Learn Mem ; 92(3): 345-55, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19394433

RESUMEN

Low-frequency electromagnetic fields (EMF) have been suggested to affect the brain via alterations of blood-brain barrier permeability to iron. Because of an immature blood-brain barrier, the young brain may be particularly vulnerable to EMF exposure. It is therefore possible that behavioral and neurotoxic effects resulting from EMF-induced iron excess in the brain would be greater in young adults. The objective of the present study was to investigate the interaction between low-frequency EMF and iron overload in young rats. In Experiment 1, we tested the effects of iron overload on spatial learning and memory. Iron treatment did not affect performance in a reference (Morris water maze) and a working memory task (8-arm radial maze). In contrast, detection of a spatial change in an object exploration task was impaired. These effects correlated with modifications of the serotoninergic metabolism. In Experiment 2, the combination of EMF exposure and iron overload was tested. As in Experiment 1, rats were not impaired in reference and working memory tasks but were mildly impaired in the detection of the spatial change. Overall, the results showed an effect of iron overload on spontaneous spatial memory processes. However, low-frequency EMF exposure did not potentiate the effects of iron overload in young rats.


Asunto(s)
Encéfalo/fisiología , Campos Electromagnéticos , Sobrecarga de Hierro/fisiopatología , Hierro/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Percepción Espacial/fisiología , Envejecimiento , Animales , Cognición/fisiología , Conducta Exploratoria/fisiología , Compuestos Ferrosos/administración & dosificación , Compuestos de Hierro/administración & dosificación , Locomoción/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Pruebas Neuropsicológicas , Ratas , Ratas Wistar , Factores de Tiempo
15.
Brain Struct Funct ; 224(1): 363-372, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30341742

RESUMEN

Recent studies have suggested deep brain stimulation (DBS) as a promising therapy in patients with Alzheimer's disease (AD). Particularly, the stimulation of the forniceal area was found to slow down the cognitive decline of some AD patients, but the biochemical and anatomical modifications underlying these effects remain poorly understood. We evaluated the effects of chronic forniceal stimulation on amyloid burden, inflammation, and neuronal loss in a transgenic Alzheimer rat model TgF344-AD, as well as in age-matched control rats. 18-month-old rats were surgically implanted with electrodes in stereotactic conditions and connected to a portable microstimulator for chronic DBS in freely moving rats. The stimulation was continuous during 5 weeks and animals were immediately sacrificed for immunohistochemical analysis of pathological markers. Implanted, but non-stimulated rats were used as controls. We found that chronic forniceal DBS in the Tg-AD rat significantly reduces amyloid deposition in the hippocampus and cortex, decreases astrogliosis and microglial activation and lowers neuronal loss, as determined by NeuN staining. In control animals, the stimulation neither affects neuroinflammation nor neuronal count. In the Tg-F344-AD rat model, 5 weeks of forniceal DBS decreased amyloidosis, inflammatory responses, and neuronal loss in both cortex and hippocampus. These findings strongly suggest a neuroprotective effect of DBS and support the beneficial effects of targeting the fornix in Alzheimer's disease patients.


Asunto(s)
Enfermedad de Alzheimer/terapia , Encéfalo/patología , Estimulación Encefálica Profunda/métodos , Fórnix , Inflamación/terapia , Degeneración Nerviosa , Neuronas/patología , Placa Amiloide , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Ratas Endogámicas F344 , Ratas Transgénicas , Factores de Tiempo
16.
J Neurosci ; 27(9): 2377-86, 2007 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-17329435

RESUMEN

This study examined the cellular changes produced in the striatum by chronic L-DOPA treatment and prolonged subthalamic nucleus high-frequency stimulation (STN-HFS) applied separately, successively, or in association, in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease (PD). Only animals showing severe L-DOPA-induced dyskinesias (LIDs) were included, and STN-HFS was applied for 5 d at an intensity efficient for alleviating akinesia without inducing dyskinesias. L-DOPA treatment alone induced FosB/deltaFosB immunoreactivity, exacerbated the postlesional increase in preproenkephalin, reversed the decrease in preprotachykinin, and markedly increased mRNA levels of preprodynorphin and of the glial glutamate transporter GLT1, which were respectively decreased and unaffected by the dopamine lesion. STN-HFS did not affect per se the postlesion changes in any of these markers. However, when applied in association with L-DOPA treatment, it potentiated the positive modulation exerted by L-DOPA on all of the markers examined and tended to exacerbate LIDs. After 5 d of L-DOPA withdrawal, the only persisting drug-induced responses were an elevation in preprodynorphin mRNA levels and in the number of FosB/deltaFosB-immunoreactive neurons. Selective additional increases in these two markers were measured when STN-HFS was applied subsequently to L-DOPA treatment. These data provide the first evidence that STN-HFS exacerbates the responsiveness of striatal cells to L-DOPA medication and suggest that STN-HFS acts specifically through an L-DOPA-modulated signal transduction pathway associated with LIDs in the striatum. They point to striatal cells as a primary site for the complex interactions between these two therapeutic approaches in PD and argue against a direct anti-dyskinetic action of STN-HFS.


Asunto(s)
Levodopa/farmacología , Corteza Motora/fisiopatología , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Animales , Biomarcadores/metabolismo , Estimulación Encefálica Profunda , Desnervación , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Discinesias/tratamiento farmacológico , Discinesias/etiología , Discinesias/fisiopatología , Complejo IV de Transporte de Electrones/metabolismo , Masculino , Neuropéptidos/metabolismo , Enfermedad de Parkinson/complicaciones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar
17.
J Neurochem ; 105(2): 484-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18042178

RESUMEN

Nigral depletion of the main brain antioxidant GSH is the earliest biochemical event involved in Parkinson's disease pathogenesis. Its causes are completely unknown but increasing number of evidence suggests that glutamate transporters [excitatory amino acid transporters (EAATs)] are the main route by which GSH precursors may enter the cell. In this study, we report that dopamine (DA) neurons, which express the excitatory amino acid carrier 1, are preferentially affected by EAAT dysfunction when compared with non-DA neurons. In rat embryonic mesencephalic cultures, l-trans-pyrrolidine-2,4-dicarboxylate, a substrate inhibitor of EAATs, is directly and preferentially toxic for DA neurons by decreasing the availability of GSH precursors and lowering their resistance threshold to glutamate excitotoxicity through NMDA-receptors. In adult rat, acute intranigral injection of l-trans-pyrrolidine-2,4-dicarboxylate induces a large regionally selective and dose-dependent loss of DA neurons and alpha-synuclein aggregate formation. These data highlight for the first time the importance of excitatory amino acid carrier 1 function for the maintenance of antioxidant defense in DA neurons and suggest its dysfunction as a candidate mechanism for the selective death of DA neurons such as occurring in Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Transportador 1 de Aminoácidos Excitadores/fisiología , Mesencéfalo/citología , Neuronas/metabolismo , Análisis de Varianza , Animales , Ácido Aspártico/farmacología , Células Cultivadas , Ácidos Dicarboxílicos/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Proteína Ácida Fibrilar de la Glía/farmacología , Ácido Glutámico/toxicidad , Neuronas/efectos de los fármacos , Inhibidores de la Captación de Neurotransmisores/farmacología , Fosfopiruvato Hidratasa/metabolismo , Embarazo , Pirrolidinas/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/metabolismo
18.
Front Cell Neurosci ; 11: 149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620281

RESUMEN

The solute carrier family 25 (SLC25) drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1) have been identified in early epileptic encephalopathy (EEE) and migrating partial seizures in infancy (MPSI) but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA) designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA) constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate) (NAD(P)H) formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC) was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP) in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in astrocytes. Main Points: The mitochondrial respiratory chain is functional in absence of GC1Lack of glutamate oxidation results in a lower global ATP levelLack of mitochondrial glutamate transport results in intracellular glutamate accumulation.

19.
PLoS One ; 10(11): e0142838, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26571268

RESUMEN

Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.


Asunto(s)
Ganglios Basales/fisiopatología , Venenos de Abeja/farmacología , Modelos Animales de Enfermedad , Actividad Motora/efectos de los fármacos , Corteza Motora/fisiopatología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Ganglios Basales/efectos de los fármacos , Venenos de Abeja/administración & dosificación , Venenos de Abeja/uso terapéutico , Catalepsia/complicaciones , Catalepsia/tratamiento farmacológico , Catalepsia/fisiopatología , Antagonistas de Dopamina/farmacología , Estimulación Eléctrica , Haloperidol , Masculino , Corteza Motora/efectos de los fármacos , Oxidopamina , Enfermedad de Parkinson/complicaciones , Ratas Wistar , Receptores Dopaminérgicos/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/fisiopatología
20.
Behav Brain Res ; 258: 80-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24144546

RESUMEN

The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Campos Electromagnéticos , Sobrecarga de Hierro/metabolismo , Aprendizaje por Laberinto/fisiología , Estrés Oxidativo/fisiología , Serotonina/metabolismo , Animales , Conducta Animal/fisiología , Conducta Exploratoria/fisiología , Masculino , Memoria a Corto Plazo/fisiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA