Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 213(8): 1271-9, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26743841

RESUMEN

BACKGROUND: Shiga toxin (Stx) is the primary virulence factor of Stx-producing Escherichia coli (STEC). STEC can produce Stx1a and/or Stx2a, which are antigenically distinct. However, Stx2a-producing STEC are associated with more severe disease than strains producing both Stx1a and Stx2a. METHODS AND RESULTS: To address the hypothesis that the reason for the association of Stx2a with more severe disease is because Stx2a crosses the intestinal barrier with greater efficiency that Stx1a, we covalently labeled Stx1a and Stx2a with Alexa Fluor 750 and determined the ex vivo fluorescent intensity of murine systemic organs after oral intoxication. Surprisingly, both Stxs exhibited similar dissemination patterns and accumulated in the kidneys. We next cointoxicated mice to determine whether Stx1a could impede Stx2a. Cointoxication resulted in increased survival and an extended mean time to death, compared with intoxication with Stx2a only. The survival benefit was dose dependent, with the greatest effect observed when 5 times more Stx1a than Stx2a was delivered, and was amplified when Stx1a was delivered 3 hours prior to Stx2a. Cointoxication with an Stx1a active site toxoid also reduced Stx2a toxicity. CONCLUSIONS: These studies suggest that Stx1a reduces Stx2a-mediated toxicity, a finding that may explain why STEC that produce only Stx2a are associated with more severe disease than strains producing Stx1a and Stx2a.


Asunto(s)
Toxina Shiga I/farmacocinética , Toxina Shiga I/toxicidad , Toxina Shiga II/antagonistas & inhibidores , Toxina Shiga II/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Administración Oral , Animales , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Ratones , Ratones Endogámicos BALB C , Toxina Shiga I/administración & dosificación , Toxina Shiga II/administración & dosificación , Escherichia coli Shiga-Toxigénica , Análisis de Supervivencia
2.
Proc Natl Acad Sci U S A ; 110(23): E2126-33, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690602

RESUMEN

The likelihood that a single individual infected with the Shiga toxin (Stx)-producing, food-borne pathogen Escherichia coli O157:H7 will develop a life-threatening sequela called the hemolytic uremic syndrome is unpredictable. We reasoned that conditions that enhance Stx binding and uptake within the gut after E. coli O157:H7 infection should result in greater disease severity. Because the receptor for Stx, globotriaosylceramide, is up-regulated in the presence of butyrate in vitro, we asked whether a high fiber diet (HFD) that reportedly enhances butyrate production by normal gut flora can influence the outcome of an E. coli O157 infection in mice. To address that question, groups of BALB/c mice were fed high (10%) or low (2%) fiber diets and infected with E. coli O157:H7 strain 86-24 (Stx2+). Mice fed an HFD exhibited a 10- to 100-fold increase in colonization, lost 15% more body weight, exhibited signs of morbidity, and had 25% greater mortality relative to the low fiber diet (LFD)-fed group. Additionally, sections of intestinal tissue from HFD-fed mice bound more Stx1 and expressed more globotriaosylceramide than did such sections from LFD-fed mice. Furthermore, the gut microbiota of HFD-fed mice compared with LFD-fed mice contained reduced levels of native Escherichia species, organisms that might protect the gut from colonization by incoming E. coli O157:H7. Taken together, these results suggest that susceptibility to infection and subsequent disease after ingestion of E. coli O157:H7 may depend, at least in part, on individual diet and/or the capacity of the commensal flora to produce butyrate.


Asunto(s)
Butiratos/metabolismo , Fibras de la Dieta/farmacología , Susceptibilidad a Enfermedades/microbiología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/fisiología , Tracto Gastrointestinal/microbiología , Análisis de Varianza , Animales , Línea Celular , Cartilla de ADN/genética , Escherichia coli O157/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Cromatografía de Gases y Espectrometría de Masas , Humanos , Inmunohistoquímica , Ratones , Toxina Shiga/metabolismo , Especificidad de la Especie
3.
BMC Genomics ; 16: 947, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26573818

RESUMEN

BACKGROUND: Shiga toxin (Stx)-producing E. coli (STEC) are responsible for foodborne outbreaks that can result in severe human disease. During an outbreak, differential disease outcomes are observed after infection with the same STEC strain. One question of particular interest is why some infected people resolve infection after hemorrhagic colitis whereas others progress to the hemolytic uremic syndrome (HUS). Host age and infection dose have been implicated; however, these parameters do not appear to fully account for all of the observed variation in disease severity. Therefore, we hypothesized that additional host genetic factors may play a role in progression to HUS. METHODS AND RESULTS: To mimic the genetic diversity in the human response to infection by STEC, we measured the capacity of an O157:H7 outbreak isolate to colonize mouse strains from the advanced recombinant inbred (ARI) BXD panel. We first infected the BXD parental strains C57BL/6 J (B6) and DBA/2 J (D2) with either 86-24 (Stx2a+) or TUV86-2, an Stx2a-negative isogenic mutant. Colonization levels were determined in an intact commensal flora (ICF) infection model. We found a significant difference in colonization levels between the parental B6 and D2 strains after infection with TUV86-2 but not with 86-24. This observation suggested that a host factor that may be masked by Stx2a affects O157:H7 colonization in some genetic backgrounds. We then determined the TUV86-2 colonization levels of 24 BXD strains in the ICF model. We identified several quantitative trait loci (QTL) associated with variation in colonization by correlation analyses. We found a highly significant QTL on proximal chromosome 9 (12.5-26.7 Mb) that strongly predicts variation in colonization levels and accounts for 15-20 % of variance. Linkage, polymorphism and co-citation analyses of the mapped region revealed 36 candidate genes within the QTL, and we identified five genes that are most likely responsible for the differential colonization. CONCLUSIONS: The identification of the QTL on chromosome 9 supports our hypothesis that individual genetic makeup affects the level of colonization after infection with STEC O157:H7.


Asunto(s)
Mapeo Cromosómico , ADN Recombinante/genética , Escherichia coli O157/fisiología , Interacciones Huésped-Patógeno , Sitios de Carácter Cuantitativo/genética , Animales , Escherichia coli O157/metabolismo , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Ligamiento Genético , Variación Genética , Síndrome Hemolítico-Urémico/genética , Síndrome Hemolítico-Urémico/microbiología , Humanos , Ratones , Ratones Endogámicos DBA , Toxina Shiga/metabolismo , Especificidad de la Especie , Factores de Tiempo
4.
J Infect Dis ; 210(12): 1909-19, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25038258

RESUMEN

BACKGROUND: A Shiga toxin type 2a (Stx2a)-producing enteroaggregative Escherichia coli (EAEC) strain of serotype O104:H4 caused a large outbreak in 2011 in northern Europe. Pathogenic mechanisms for this strain are unclear. We hypothesized that EAEC genes encoded on the pAA virulence plasmid promoted the translocation of Stx2a across the intestinal mucosa. METHODS: We investigated the potential contribution of pAA by using mutants of Stx-EAEC strain C227-11, either cured of the pAA plasmid or deleted for individual known pAA-encoded virulence genes (ie, aggR, aggA, and sepA). The resulting mutants were tested for their ability to induce interleukin 8 (IL-8) secretion and translocation of Stx2a across a polarized colonic epithelial (T84 cell) monolayer. RESULTS: We found that deletion of aggR or aggA significantly reduced bacterial adherence and (independently) translocation of Stx2a across the T84-cell monolayer. Moreover, deletion of aggR, aggA, sepA, or the Stx2a-encoding phage from C227-11 resulted in reduced secretion of IL-8 from the infected monolayer. CONCLUSIONS: Our data suggest that the AggR-regulated aggregative adherence fimbriae I enhance inflammation and enable the outbreak strain to both adhere to epithelial cells and translocate Stx2a across the intestinal epithelium.


Asunto(s)
Células Epiteliales/metabolismo , Escherichia coli/metabolismo , Transporte de Proteínas , Toxina Shiga II/metabolismo , Adhesión Bacteriana , Línea Celular , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Genotipo , Alemania , Humanos , Interleucina-8/metabolismo , Plásmidos , Serogrupo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Emerg Infect Dis ; 20(10): 1669-77, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25271406

RESUMEN

Shiga toxins (Stx) are cytotoxins involved in severe human intestinal disease. These toxins are commonly found in Shigella dysenteriae serotype 1 and Shiga-toxin-producing Escherichia coli; however, the toxin genes have been found in other Shigella species. We identified 26 Shigella flexneri serotype 2 strains isolated by public health laboratories in the United States during 2001-2013, which encode the Shiga toxin 1a gene (stx1a). These strains produced and released Stx1a as measured by cytotoxicity and neutralization assays using anti-Stx/Stx1a antiserum. The release of Stx1a into culture supernatants increased ≈100-fold after treatment with mitomycin C, suggesting that stx1a is carried by a bacteriophage. Infectious phage were found in culture supernatants and increased ≈1,000-fold with mitomycin C. Whole-genome sequencing of several isolates and PCR analyses of all strains confirmed that stx1a was carried by a lambdoid bacteriophage. Furthermore, all patients who reported foreign travel had recently been to Hispañiola, suggesting that emergence of these novel strains is associated with that region.


Asunto(s)
Disentería Bacilar/epidemiología , Disentería Bacilar/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Toxina Shiga I/metabolismo , Shigella flexneri/metabolismo , Animales , Chlorocebus aethiops , República Dominicana/epidemiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Haití/epidemiología , Humanos , Lisogenia , Mitomicina/farmacología , Mutación , Profagos , Serogrupo , Toxina Shiga I/clasificación , Toxina Shiga I/genética , Shigella flexneri/clasificación , Shigella flexneri/genética , Shigella flexneri/patogenicidad , Siphoviridae/genética , Siphoviridae/fisiología , Células Vero , Virulencia
6.
Infect Immun ; 81(5): 1562-74, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23439303

RESUMEN

In May 2011, a large food-borne outbreak was traced to an unusual O104:H4 enteroaggregative Escherichia coli (EAEC) strain that produced Shiga toxin (Stx) type 2 (Stx2). We developed a mouse model to study the pathogenesis and treatment for this strain and examined the virulence of the isolate for Dutch belted rabbits. O104:H4 strain C227-11 was gavaged into C57BL/6 mice at 10(9) to 10(11) CFU/animal. The infected animals were then given water with ampicillin (Amp; 5 g/liter) ad libitum. The C227-11-infected, Amp-treated C57BL/6 mice exhibited both morbidity and mortality. Kidneys from mice infected with C227-11 showed acute tubular necrosis, a finding seen in mice infected with typical Stx-producing E. coli. We provided anti-Stx2 antibody after infection and found that all of the antibody-treated mice gained more weight than untreated mice and, in another study, that all of the antibody-treated animals lived, whereas 3/8 phosphate-buffered saline-treated mice died. We further compared the pathogenesis of C227-11 with that of an Stx-negative (Stx(-)) O104:H4 isolate, C734-09, and an Stx2(-) phage-cured derivative of C227-11. Whereas C227-11-infected animals lost weight or gained less weight over the course of infection and died, mice infected with either of the Stx(-) isolates did not lose weight and only one mouse died. When the Stx-positive (Stx(+)) and Stx2(-) O104:H4 strains were compared in rabbits, greater morbidity and mortality were observed in rabbits infected with the Stx2(+) isolates than the Stx2(-) isolates. In conclusion, we describe two animal models for EAEC pathogenesis, and these studies show that Stx2 is responsible for most of the virulence observed in C227-11-infected mice and rabbits.


Asunto(s)
Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Toxina Shiga II , Escherichia coli Shiga-Toxigénica/patogenicidad , Ampicilina/uso terapéutico , Análisis de Varianza , Animales , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Femenino , Alemania/epidemiología , Ratones , Ratones Endogámicos C57BL , Conejos , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Virulencia
7.
Microorganisms ; 11(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37630485

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major cause of foodborne illness globally, and infection with serotype O157:H7 is associated with increased risk of hospitalization and death in the U.S. The Stxs are encoded on a temperate bacteriophage (stx-phage), and phage induction leads to Stx expression; subtype Stx2a in particular is associated with more severe disease. Our earlier studies showed significant levels of RecA-independent Stx2 production by STEC O157:H7 strain JH2010 (stx2astx2c), even though activated RecA is the canonical trigger for stx-phage induction. This study aimed to further compare and contrast RecA-independent toxin production in Stx2-producing clinical isolates. Deletion of recA in JH2010 resulted in higher in vitro supernatant cytotoxicity compared to that from JH2016ΔrecA, and the addition of the chelator ethylenediaminetetraacetic acid (EDTA) and various metal cations to the growth medium exacerbated the difference in cytotoxicity exhibited by the two deletion strains. Both the wild-type and ΔrecA deletion strains exhibited differential cytotoxicity in the feces of infected, streptomycin (Str)-treated mice. Comparison of the stx2a-phage predicted protein sequences from JH2010 and JH2016 revealed low amino acid identity of key phage regulatory proteins that are involved in RecA-mediated stx-phage induction. Additionally, other STEC isolates containing JH2010-like and JH2016-like stx2a-phage sequences led to similar Stx2 localization, as demonstrated by JH2010ΔrecA and JH2016ΔrecA, respectively. Deletion of the stx2a-phage regulatory region in the wild-type strains prevented the differential localization of Stx2 into the culture supernatant, a finding that suggests that the stx2a-phage regulatory region is involved in the differential ΔrecA phenotypes exhibited by the two strains. We hypothesize that the amino acid differences between the JH2010 and JH2016 phage repressor proteins (CIs) lead to structural differences that are responsible for differential interaction with RecA. Overall, we discovered that non-homologous stx2a-phage regulatory proteins differentially influence RecA-independent, and possibly RecA-dependent, Stx2 production. These findings emphasize the importance of studying non-homologous regulatory elements among stx2-phages and their influence on Stx2 production and virulence of STEC isolates.

8.
Toxins (Basel) ; 15(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36977098

RESUMEN

Shiga toxins (Stxs) produced by ingested E. coli can induce hemolytic uremic syndrome after crossing the intact intestinal barrier, entering the bloodstream, and targeting endothelial cells in the kidney. The method(s) by which the toxins reach the bloodstream are not fully defined. Here, we used two polarized cell models to evaluate Stx translocation: (i) a single-layer primary colonic epithelial cell model and (ii) a three-cell-layer model with colonic epithelial cells, myofibroblasts, and colonic endothelial cells. We traced the movement of Stx types 1a and 2a across the barrier models by measuring the toxicity of apical and basolateral media on Vero cells. We found that Stx1a and Stx2a crossed both models in either direction. However, approximately 10-fold more Stx translocated in the three-layer model as compared to the single-layer model. Overall, the percentage of toxin that translocated was about 0.01% in the epithelial-cell-only model but up to 0.09% in the three-cell-layer model. In both models, approximately 3- to 4-fold more Stx2a translocated than Stx1a. Infection of the three-cell-layer model with Stx-producing Escherichia coli (STEC) strains showed that serotype O157:H7 STEC reduced barrier function in the model and that the damage was not dependent on the presence of the eae gene. Infection of the three-layer model with O26:H11 STEC strain TW08571 (Stx1a+ and Stx2a+), however, allowed translocation of modest amounts of Stx without reducing barrier function. Deletion of stx2a from TW08571 or the use of anti-Stx1 antibody prevented translocation of toxin. Our results suggest that single-cell models may underestimate the amount of Stx translocation and that the more biomimetic three-layer model is suited for Stx translocation inhibitor studies.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Chlorocebus aethiops , Toxina Shiga/metabolismo , Células Vero , Células Endoteliales/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Toxinas Shiga/metabolismo
9.
J Clin Microbiol ; 50(9): 2951-63, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22760050

RESUMEN

When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Toxinas Shiga/clasificación , Toxinas Shiga/genética , Escherichia coli Shiga-Toxigénica/genética , Terminología como Asunto , Genotipo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Toxins (Basel) ; 13(1)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467588

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli (STEC) strain B2F1 produces Stx type 2d, a toxin that becomes more toxic towards Vero cells in the presence of intestinal mucus. STEC that make Stx2d are more pathogenic to streptomycin (Str)-treated mice than most STEC that produce Stx2a or Stx2c. However, purified Stx2d is only 2- or 7-fold more toxic by the intraperitoneal route than Stx2a or Stx2c, respectively. We hypothesized, therefore, that the toxicity differences among Stx2a, Stx2c, and Stx2d occur at the level of delivery from the intestine. To evaluate that hypothesis, we altered the toxin type produced by stx2d+ mouse virulent O91:H21 clinical isolate B2F1 to Stx2a or Stx2c. Because B2F1 encodes two copies of stx2d, we did these studies in a derivative of B2F1 in which stx2d1 was deleted. Although the strains were equivalently virulent to the Str-treated mice at the 1010 dose, the B2F1 strain that produced Stx2a was attenuated relative to the ones that produced Stx2d or Stx2c when administered at 103 CFU/mouse. We next compared the oral toxicities of purified Stx2a, Stx2c, and Stx2d. We found that purified Stx2d is more toxic than Stx2a or Stx2c upon oral administration at 4 µg/mouse. Taken together, these studies suggest that Stx2 toxins are most potent when delivered directly from the bacterium. Furthermore, because Stx2d and Stx2c have the identical amino acid composition in the toxin B subunit, our results indicate that the virulence difference between Stx2a and Stx2d and Stx2c resides in the B or binding subunit of the toxins.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Escherichia coli Shiga-Toxigénica/patogenicidad , Administración Oral , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Heces/química , Heces/microbiología , Intestinos/microbiología , Ratones , Ratones Endogámicos BALB C , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética , Tasa de Supervivencia , Células Vero , Virulencia
11.
Open Forum Infect Dis ; 8(6): ofab271, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34189178

RESUMEN

BACKGROUND: Travelers' diarrhea (TD) is common among military personnel deployed to tropical and subtropical regions. It remains unclear how TD and subsequent antibiotic treatment impact the resident microflora within the gut, especially given increased prevalence of antibiotic resistance among enteric pathogens and acquisition of multidrug-resistant organisms. We examined functional properties of the fecal microflora in response to TD, along with subsequent antibiotic treatment. METHODS: Fecal samples from US and UK military service members deployed to Djibouti, Kenya, and Honduras who presented with acute watery diarrhea were collected. A sample was collected at acute presentation to the clinic (day 0, before antibiotics), as well as 7 and/or 21 days following a single dose of antibiotics (azithromycin [500 mg], levofloxacin [500 mg], or rifaximin [1650 mg], all with loperamide). Each stool sample underwent culture and TaqMan reverse transcription polymerase chain reaction analyses for pathogen and antibiotic resistance gene detection. Purified DNA from each sample was analyzed using the HumiChip3.1 functional gene array. RESULTS: In total, 108 day 1 samples, 50 day 7 samples, and 94 day 21 samples were available for analysis from 119 subjects. Geographic location and disease severity were associated with distinct functional compositions of fecal samples. There were no overt functional differences between pre- and postantibiotic treatment samples, nor was there increased acquisition of antibiotic resistance determinants for any of the antibiotic regimens. CONCLUSIONS: These results indicate that single-dose antibiotic regimens may not drastically alter the functional or antibiotic resistance composition of fecal microflora, which should inform clinical practice guidelines and antimicrobial stewardship. CLINICAL TRIALS REGISTRATION NUMBER: NCT01618591.

12.
Infect Immun ; 78(11): 4488-99, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20732996

RESUMEN

Escherichia coli O157:H7 and other Shiga toxin (Stx)-producing E. coli (STEC) bacteria are not enteroinvasive but can cause hemorrhagic colitis. In some STEC-infected individuals, a life-threatening sequela of infection called the hemolytic uremic syndrome may develop that can lead to kidney failure. This syndrome is linked to the production of Stx by the infecting organism. For Stx to reach the kidney, the toxin must first penetrate the colonic epithelial barrier. However, the Stx receptor, globotriaosylceramide (Gb3), has been thought to be absent from human intestinal epithelial cells. Thus, the mechanisms by which the toxin associates with and traverses through the intestine en route to the kidneys have been puzzling aspects of STEC pathogenesis. In this study, we initially determined that both types of Stx made by STEC, Stx1 and Stx2, do in fact bind to colonic epithelia in fresh tissue sections and to a colonic epithelial cell line (HCT-8). We also discovered that globotetraosylceramide (Gb4), a lower-affinity toxin receptor derived from Gb3, is readily detectable on the surfaces of human colonic tissue sections and HCT-8 cells. Furthermore, we found that Gb3 is present on a fraction of HCT-8 cells, where it presumably functions to bind and internalize Stx1 and Stx2. In addition, we established by quantitative real-time PCR (qRT-PCR) that both fresh colonic epithelial sections and HCT-8 cells express Gb3 synthase mRNA. Taken together, our data suggest that Gb3 may be present in small quantities in human colonic epithelia, where it may compete for Stx binding with the more abundantly expressed glycosphingolipid Gb4.


Asunto(s)
Colon , Galactosiltransferasas/metabolismo , Globósidos/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/patogenicidad , Línea Celular , Células Cultivadas , Colon/citología , Colon/metabolismo , Células Epiteliales/metabolismo , Escherichia coli , Infecciones por Escherichia coli , Galactosiltransferasas/genética , Humanos , Técnicas de Cultivo de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Microb Pathog ; 48(3-4): 131-42, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20096770

RESUMEN

Escherichia coli O157:H7 is a food-borne pathogen that can cause hemorrhagic colitis and, occasionally, hemolytic uremic syndrome, a sequela of infection that can result in renal failure and death. Here we sought to model the pathogenesis of orally-administered E. coli O157:H7 in BALB/c mice with an intact intestinal flora. First, we defined the optimal dose that permitted sustained fecal shedding of E. coli O157:H7 over 7 days ( approximately 10(9) colony forming units). Next, we monitored the load of E. coli O157:H7 in intestinal sections over time and observed that the cecum was consistently the tissue with the highest E. coli O157:H7 recovery. We then followed the expression of two key E. coli O157:H7 virulence factors, the adhesin intimin and Shiga toxin type 2, and detected both proteins early in infection when bacterial burdens were highest. Additionally, we noted that during infection, animals lost weight and approximately 30% died. Moribund animals also exhibited elevated levels of blood urea nitrogen, and, on necropsy, showed evidence of renal tubular damage. We conclude that conventional mice inoculated orally with high doses of E. coli O157:H7 can be used to model both intestinal colonization and subsequent development of certain extraintestinal manifestations of E. coli O157:H7 disease.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Adhesinas Bacterianas/biosíntesis , Animales , Peso Corporal , Proteínas de Escherichia coli/biosíntesis , Heces/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Humanos , Túbulos Renales/patología , Ratones , Ratones Endogámicos BALB C , Toxina Shiga II/biosíntesis , Análisis de Supervivencia , Urea/sangre , Factores de Virulencia/biosíntesis
14.
Artículo en Inglés | MEDLINE | ID: mdl-32175286

RESUMEN

In this study we compared nine Shiga toxin (Stx)-producing Escherichia coli O157:H7 patient isolates for Stx levels, stx-phage insertion site(s), and pathogenicity in a streptomycin (Str)-treated mouse model. The strains encoded stx2a, stx1a and stx2a, or stx2a and stx2c. All of the strains elaborated 105-106 cytotoxic doses 50% (CD50) into the supernatant after growth in vitro as measured on Vero cells, and showed variable levels of increased toxin production after growth with sub-inhibitory levels of ciprofloxacin (Cip). The stx2a+stx2c+ isolates were 90-100% lethal for Str-treated BALB/c mice, though one isolate, JH2013, had a delayed time-to-death. The stx2a+ isolate was avirulent. Both an stx2a and a recA deletion mutant of one of the stx2a+stx2c+ strains, JH2010, exhibited at least a three-log decrease in cytotoxicity in vitro and both were avirulent in the mice. Stool from Str-treated mice infected with the highly virulent isolates were 10- to 100-fold more cytotoxic than feces from mice infected with the clinical isolate, JH2012, that made only Stx2a. Taken together these findings demonstrate that the stx2a-phage from JH2010 induces to higher levels in vivo than does the phage from JH2012. The stx1a+stx2a+ clinical isolates were avirulent and neutralization of Stx1 in stool from mice infected with those strains indicated that the toxin produced in vivo was primarily Stx1a. Treatment of mice infected with Stx1a+Stx2a+ isolates with Cip resulted in an increase in Stx2a production in vivo and lethality in the mice. Our data suggest that high levels of Stx2a in stool are predictive of virulence in mice.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Animales , Chlorocebus aethiops , Escherichia coli O157/genética , Heces , Humanos , Ratones , Ratones Endogámicos BALB C , Toxina Shiga II/genética , Células Vero , Virulencia
15.
Artículo en Inglés | MEDLINE | ID: mdl-32509590

RESUMEN

To discern if there was a particular genotype associated with clinical enteroaggregative Escherichia coli (EAEC) strains isolated from deployed military personnel (DMP) with travelers' diarrhea (TD), we characterized a collection of EAEC from DMP deployed to Afghanistan, Djibouti, Kenya, or Honduras. Although we did not identify a specific EAEC genotype associated with TD in DMP, we found that EAEC isolated at the first clinic visit were more likely to encode the dispersin gene aap than EAEC collected at follow-up visits. A majority of the EAEC isolates were typical EAEC that adhered to HEp-2 cells, formed biofilms, and harbored genes for aggregative adherence fimbriae (AAF), AggR, and serine protease autotransporters of Enterobacteriaceae (SPATEs). A separate subset of the EAEC had aggR and genes for SPATEs but encoded a gene highly homologous to that for CS22, a fimbriae more commonly found in enterotoxigenic E. coli. None of these CS22-encoding EAEC formed biofilms in vitro or adhered to HEp-2 cells. Whole genome sequence and single nucleotide polymorphism analyses demonstrated that most of the strains were genetically diverse, but that a few were closely related. Isolation of these related strains occurred within days to more than a year apart, a finding that suggests a persistent source and genomic stability. In an ampicillin-treated mouse model we found that an agg4A+ aar- isolate formed a biofilm in the intestine and caused reduced weight gain in mice, whereas a strain that did not form an in vivo biofilm caused no morbidity. Our diverse strain collection from DMP displays the heterogeneity of EAEC strains isolated from human patients, and our mouse model of infection indicated the genotype agg4A+ aar- and/or capacity to form biofilm in vivo may correlate to disease severity.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Personal Militar , Animales , Diarrea , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Kenia , Ratones , Viaje , Virulencia
16.
Infect Immun ; 77(7): 2730-40, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19433543

RESUMEN

Monoclonal antibody (MAb) 11E10 recognizes the Shiga toxin type 2 (Stx2) A(1) subunit. The binding of 11E10 to Stx2 neutralizes both the cytotoxic and lethal activities of Stx2, but the MAb does not bind to or neutralize Stx1 despite the 61% identity and 75% similarity in the amino acids of the A(1) fragments. In this study, we sought to identify the segment or segments on Stx2 that constitute the 11E10 epitope and to determine how recognition of that region by 11E10 leads to inactivation of the toxin. Toward those objectives, we generated a set of chimeric Stx1/Stx2 molecules and then evaluated the capacity of 11E10 to recognize those hybrid toxins by Western blot analyses and to neutralize them in Vero cell cytotoxicity assays. We also compared the amino acid sequences and crystal structures of Stx1 and Stx2 for stretches of dissimilarity that might predict a binding epitope on Stx2 for 11E10. Through these assessments, we concluded that the 11E10 epitope is comprised of three noncontiguous regions surrounding the Stx2 active site. To determine how 11E10 neutralizes Stx2, we examined the capacity of 11E10/Stx2 complexes to target ribosomes. We found that the binding of 11E10 to Stx2 prevented the toxin from inhibiting protein synthesis in an in vitro assay but also altered the overall cellular distribution of Stx2 in Vero cells. We propose that the binding of MAb 11E10 to Stx2 neutralizes the effects of the toxin by preventing the toxin from reaching and/or inactivating the ribosomes.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Mapeo Epitopo , Toxina Shiga II/antagonistas & inhibidores , Toxina Shiga II/inmunología , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Masculino , Modelos Moleculares , Pruebas de Neutralización , Unión Proteica , Estructura Terciaria de Proteína , Toxina Shiga II/metabolismo , Células Vero
17.
Front Microbiol ; 10: 1824, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456767

RESUMEN

An O104:H4 Shiga toxin (Stx)-producing enteroaggregative Escherichia coli (EAEC) strain caused a large outbreak of bloody diarrhea and the hemolytic uremic syndrome in 2011. We previously developed an ampicillin (Amp)-treated C57BL/6 mouse model to measure morbidity (weight loss) and mortality of mice orally infected with the prototype Stx-EAEC strain C227-11. Here, we hypothesized that mice fed C227-11 cured of the pAA plasmid or deleted for individual genes on that plasmid would display reduced virulence compared to animals given the wild-type (wt) strain. C227-11 cured of the pAA plasmid or deleted for the known pAA-encoded virulence genes aggR, aggA, sepA, or aar were fed to Amp-treated C57BL/6 mice at doses of 1010-1011CFU. Infected animals were then either monitored for morbidity and lethality for 28 days or euthanized to determine intestinal pathology and colonization levels at selected times. The pAA-cured, aggR, and aggA mutants of strain C227-11 all showed reduced colonization at various intestinal sites. However, the aggR mutant was the only mutant attenuated for virulence as it showed both reduced morbidity and mortality. The aar mutant showed increased expression of the aggregative adherence fimbriae (AAF) and caused greater systemic effects in infected mice when compared to the C227-11 wt strain. However, unexpectedly, both the aggA and aar mutants displayed increased weight loss compared to wt. The sepA mutant did not exhibit altered morbidity or mortality in the Amp-treated mouse model compared to wt. Our data suggest that the increased morbidity due to the aar mutant could possibly be via an effect on expression of an as yet unknown virulence-associated factor under AggR control.

18.
Infect Immun ; 76(10): 4469-78, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18694970

RESUMEN

Hemolytic-uremic syndrome (HUS) results from infection by Shiga toxin (Stx)-producing Escherichia coli and is the most common cause of acute renal failure in children. We have developed a mouse model of HUS by administering endotoxin-free Stx2 in multiple doses over 7 to 8 days. At sacrifice, moribund animals demonstrated signs of HUS: increased blood urea nitrogen and serum creatinine levels, proteinuria, deposition of fibrin(ogen), glomerular endothelial damage, hemolysis, leukocytopenia, and neutrophilia. Increased expression of proinflammatory chemokines and cytokines in the sera of Stx2-treated mice indicated a systemic inflammatory response. Currently, specific therapeutics for HUS are lacking, and therapy for patients is primarily supportive. Mice that received 11E10, a monoclonal anti-Stx2 antibody, 4 days after starting injections of Stx2 recovered fully, displaying normal renal function and normal levels of neutrophils and lymphocytes. In addition, these mice showed decreased fibrin(ogen) deposition and expression of proinflammatory mediators compared to those of Stx2-treated mice in the absence of antibody. These results indicate that, when performed during progression of HUS, passive immunization of mice with anti-Stx2 antibody prevented the lethal effects of Stx2.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antitoxinas/uso terapéutico , Síndrome Hemolítico-Urémico/inducido químicamente , Síndrome Hemolítico-Urémico/prevención & control , Toxina Shiga II/antagonistas & inhibidores , Toxina Shiga II/toxicidad , Animales , Nitrógeno de la Urea Sanguínea , Niño , Creatinina/sangre , Citocinas/sangre , Fibrinógeno/metabolismo , Humanos , Inmunohistoquímica , Riñón/patología , Riñón/ultraestructura , Leucopenia/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Proteinuria/inducido químicamente
19.
Gut Microbes ; 6(4): 272-8, 2015 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-26039753

RESUMEN

In 2011, a Shiga toxin (Stx) type 2a-producing enteroaggregative E. coli (EAEC) strain of serotype O104:H4 caused a large lethal outbreak in Northern Europe. Until recently, the pathogenic mechanisms explaining the high virulence of the strain have remained unclear. Our laboratories have shown that EAEC genes encoded on the pAA virulence plasmid, particularly the AggR-regulated AAF/I fimbriae, enhance inflammation and enable the outbreak strain to both adhere to epithelial cells and translocate Stx2a across the intestinal epithelium, possibly explaining the high incidence of the life threatening post-diarrheal sequelae of hemolytic uremic syndrome. Epidemiologic evidence supports a model of EAEC pathogenesis comprising the concerted action of multiple virulence factors along with induction of inflammation. Here, we suggest a model for the pathogenesis of the O104:H4 outbreak strain that includes contributions from EAEC alone, but incorporating additional injury induced by Stx2a.


Asunto(s)
Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/patología , Escherichia coli/genética , Escherichia coli/patogenicidad , Toxina Shiga II/genética , Animales , Infecciones por Escherichia coli/microbiología , Europa (Continente)/epidemiología , Humanos , Modelos Biológicos , Plásmidos
20.
Clin Vaccine Immunol ; 22(4): 448-55, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25716230

RESUMEN

In the United States, Shiga toxin (Stx)-producing Escherichia coli (STEC) is the most frequent infectious cause of hemorrhagic colitis. Hemolytic uremic syndrome (HUS) is a serious sequela that may develop after STEC infection that can lead to renal failure and death in up to 10% of cases. STEC can produce one or more types of Stx, Stx1 and/or Stx2, and Stx1 and Stx2 are responsible for HUS-mediated kidney damage. We previously generated two monoclonal antibodies (MAbs) that neutralize the toxicity of Stx1 or Stx2. In this study, we evaluated the protective efficacy of human/mouse chimeric versions of those monoclonal antibodies, named cαStx1 and cαStx2. Mice given an otherwise lethal dose of Stx1 were protected from death when injected with cαStx1 either 1 h before or 1 h after toxin injection. Additionally, streptomycin-treated mice fed the mouse-lethal STEC strain B2F1 that produces the Stx2 variant Stx2d were protected when given a dose of 0.1 mg of cαStx2/kg of body weight administered up to 72 h post-oral bacterial challenge. Since many STEC strains produce both Stx1 and Stx2 and since either toxin may lead to the HUS, we also assessed the protective efficacy of the combined MAbs. We found that both antibodies were required to protect mice from the presence of both Stx1 and Stx2. Pharmacokinetic studies indicated that cαStx1 and cαStx2 had serum half-lives (t1/2) of about 50 and 145 h, respectively. We propose that cαStx1 and cαStx2, both of which have been tested for safety in humans, could be used therapeutically for prevention or treatment early in the development of HUS.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Antitoxinas/uso terapéutico , Infecciones por Escherichia coli/prevención & control , Intoxicación/prevención & control , Toxina Shiga I/antagonistas & inhibidores , Toxina Shiga II/antagonistas & inhibidores , Animales , Anticuerpos Antibacterianos/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Semivida , Masculino , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapéutico , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA