Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 19(1): 293, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482436

RESUMEN

BACKGROUND: HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is an incapacitating neuroinflammatory disorder for which no disease-modifying therapy is available, but corticosteroids provide some clinical benefit. Although HAM/TSP pathogenesis is not fully elucidated, older age, female sex and higher proviral load are established risk factors. We investigated systemic cytokines and a novel chronic inflammatory marker, GlycA, as possible biomarkers of immunopathogenesis and therapeutic response in HAM/TSP, and examined their interaction with established risk factors. PATIENTS AND METHODS: We recruited 110 People living with HTLV-1 (PLHTLV-1, 67 asymptomatic individuals and 43 HAM/TSP patients) with a total of 946 person-years of clinical follow-up. Plasma cytokine levels (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF) and GlycA were quantified by Cytometric Bead Array and 1NMR, respectively. Cytokine signaling and prednisolone response were validated in an independent cohort by nCounter digital transcriptomics. We used multivariable regression, machine learning algorithms and Bayesian network learning for biomarker identification. RESULTS: We found that systemic IL-6 was positively correlated with both age (r = 0.50, p < 0.001) and GlycA (r = 0.45, p = 0.00049) in asymptomatics, revealing an 'inflammaging" signature which was absent in HAM/TSP. GlycA levels were higher in women (p = 0.0069), but cytokine levels did not differ between the sexes. IFN-γ (p = 0.007) and IL-17A (p = 0.0001) levels were increased in untreated HAM/TSP Multivariable logistic regression identified IL-17A and proviral load as independent determinants of clinical status, resulting in modest accuracy of predicting HAM/TSP status (64.1%), while a machine learning-derived decision tree classified HAM/TSP patients with 90.7% accuracy. Pre-treatment GlycA and TNF levels significantly predicted clinical worsening (measured by Osame Motor Disability Scale), independent of proviral load. In addition, a poor prednisolone response was significantly correlated with higher post-treatment IFN-γ levels. Likewise, a transcriptomic IFN signaling score, significantly correlated with previously proposed HAM/TSP biomarkers (CASP5/CXCL10/FCGR1A/STAT1), was efficiently blunted by in vitro prednisolone treatment of PBMC from PLHTLV-1 and incident HAM/TSP. CONCLUSIONS: An age-related increase in systemic IL-6/GlycA levels reveals inflammaging in PLHTLV-1, in the absence of neurological disease. IFN-γ and IL-17A are biomarkers of untreated HAM/TSP, while pre-treatment GlycA and TNF predict therapeutic response to prednisolone pulse therapy, paving the way for a precision medicine approach in HAM/TSP.


Asunto(s)
Infecciones por HTLV-I , Trastornos Motores , Enfermedades Neuroinflamatorias , Femenino , Humanos , Teorema de Bayes , Citocinas , Virus Linfotrópico T Tipo 1 Humano , Interleucina-17 , Interleucina-6 , Leucocitos Mononucleares , Trastornos Motores/virología , Enfermedades Neuroinflamatorias/virología , Infecciones por HTLV-I/complicaciones
2.
J Immunol ; 200(4): 1434-1442, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29311364

RESUMEN

IFN-stimulated gene 15 (ISG15) deficiency in humans leads to severe IFNopathies and mycobacterial disease, the latter being previously attributed to its extracellular cytokine-like activity. In this study, we demonstrate a novel role for secreted ISG15 as an IL-10 inducer, unique to primary human monocytes. A balanced ISG15-induced monocyte/IL-10 versus lymphoid/IFN-γ expression, correlating with p38 MAPK and PI3K signaling, was found using targeted in vitro and ex vivo systems analysis of human transcriptomic datasets. The specificity and MAPK/PI3K-dependence of ISG15-induced monocyte IL-10 production was confirmed in vitro using CRISPR/Cas9 knockout and pharmacological inhibitors. Moreover, this ISG15/IL-10 axis was amplified in leprosy but disrupted in human active tuberculosis (TB) patients. Importantly, ISG15 strongly correlated with inflammation and disease severity during active TB, suggesting its potential use as a biomarker, awaiting clinical validation. In conclusion, this study identifies a novel anti-inflammatory ISG15/IL-10 myeloid axis that is disrupted in active TB.


Asunto(s)
Citocinas/inmunología , Interleucina-10/inmunología , Leucocitos Mononucleares/inmunología , Tuberculosis/inmunología , Ubiquitinas/inmunología , Humanos
3.
Int J Cancer ; 144(7): 1664-1675, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30303535

RESUMEN

Retinoic acid-related drugs have shown promising pre-clinical activity in Adult T-cell Leukemia/Lymphoma, but RORC signaling has not been explored. Therefore, we investigated transcriptome-wide interactions of the RORC pathway in HTLV-1 and ATL, using our own and publicly available gene expression data for ATL and other leukemias. Gene expression data from ATL patients were analyzed using WGCNA to determine gene modules and their correlation to clinical and molecular data. Both PBMCs and CD4+ T-Cells exhibited decreased RORC expression in four different ATL cohorts. A small subset of RORChi ATL patients was identified with significantly lower pathognomonic CADM1 and HBZ levels but similar levels of other ATL markers (CD4/CD25/CCR4), hinting at a less aggressive ATL subtype. An age-dependent decrease in RORC expression was found in HTLV-1-infected individuals, but not in healthy controls, suggesting an early molecular event predisposing to leukemogenesis. Genes upstream of RORC signaling were members of a proliferative gene module (containing proliferation markers PCNA/Ki67), whereas downstream members clustered in an anti-proliferative gene module. IL17C transcripts showed the strongest negative correlation to PCNA in both ATL cohorts, which was replicated in two large cohorts of T- and B-cell acute lymphoid leukemia (ALL). Finally, IL17C expression in purified CD4 + CCR4 + CD26-CD7- "ATL-like" cells from HTLV-1-infected individuals and ATL patients was negatively correlated with clonality, underscoring a possible antileukemic/antiproliferative role. In conclusion, decreased RORC expression and downstream signaling might represent an early event in ATL pathogenesis. An antiproliferative IL17C/PCNA link is shared between ATL, T-ALL and B-ALL, suggesting (immuno)therapeutic benefit of boosting RORC/IL17 signaling.


Asunto(s)
Regulación hacia Abajo , Interleucina-17/genética , Leucemia-Linfoma de Células T del Adulto/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Transducción de Señal , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Molécula 1 de Adhesión Celular/genética , Estudios de Cohortes , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Persona de Mediana Edad , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas de los Retroviridae/genética , Adulto Joven
4.
J Neuroinflammation ; 11: 18, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24472094

RESUMEN

BACKGROUND: Human T-cell lymphotropic virus (HTLV-1) is the causative agent of the incapacitating, neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, there are no disease-modifying therapies with long-term clinical benefits or validated biomarkers for clinical follow-up in HAM/TSP. Although CD80 and CD86 costimulatory molecules play prominent roles in immune regulation and reflect disease status in multiple sclerosis (MS), data in HAM/TSP are lacking. METHODS: Using flow cytometry, we quantified ex vivo and in vitro expression of CD80 and CD86 in PBMCs of healthy controls, HTLV-1-infected individuals with and without HAM/TSP, and MS patients. We hypothesized ex vivo CD80 and CD86 expressions and their in vitro regulation by interferon (IFN)-α/ß mirror similarities between HAM/TSP and MS and hence might reveal clinically useful biomarkers in HAM/TSP. RESULTS: Ex vivo expression of CD80 and CD86 in T and B cells increased in all HTLV-1 infected individuals, but with a selective defect for B cell CD86 upregulation in HAM/TSP. Despite decreased total B cells with increasing disease duration (p = 0.0003, r = -0.72), CD80+ B cells positively correlated with disease severity (p = 0.0017, r = 0.69) in HAM/TSP. B cell CD80 expression was higher in women with HAM/TSP, underscoring that immune markers can reflect the female predominance observed in most autoimmune diseases. In contrast to MS patients, CD80+ (p = 0.0001) and CD86+ (p = 0.0054) lymphocytes expanded upon in vitro culture in HAM/TSP patients. The expansion of CD80+ and CD86+ T cells but not B cells was associated with increased proliferation in HTLV-1 infection. In vitro treatment with IFN-ß but not IFN-α resulted in a pronounced increase of B cell CD86 expression in healthy controls, as well as in patients with neuroinflammatory disease (HAM/TSP and MS), similar to in vivo treatment in MS. CONCLUSIONS: We propose two novel biomarkers, ex vivo CD80+ B cells positively correlating to disease severity and CD86+ B cells preferentially induced by IFN-ß, which restores defective upregulation in HAM/TSP. This study suggests a role for B cells in HAM/TSP pathogenesis and opens avenues to B cell targeting (with proven clinical benefit in MS) in HAM/TSP but also CD80-directed immunotherapy, unprecedented in both HAM/TSP and MS.


Asunto(s)
Linfocitos B/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Infecciones por HTLV-I/patología , Esclerosis Múltiple/patología , Paraparesia Espástica Tropical/patología , Adulto , Biomarcadores , Células Cultivadas , Femenino , Citometría de Flujo , Infecciones por HTLV-I/complicaciones , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Paraparesia Espástica Tropical/complicaciones , Índice de Severidad de la Enfermedad , Factores Sexuales
5.
Front Immunol ; 15: 1416476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962007

RESUMEN

Human T-Lymphotropic Virus type-1 (HTLV-1) is a unique retrovirus associated with both leukemogenesis and a specific neuroinflammatory condition known as HTLV-1-Associated Myelopathy (HAM). Currently, most proposed HAM biomarkers require invasive CSF sampling, which is not suitable for large cohorts or repeated prospective screening. To identify non-invasive biomarkers for incident HAM in a large Brazilian cohort of PLwHTLV-1 (n=615 with 6,673 person-years of clinical follow-up), we selected all plasma samples available at the time of entry in the cohort (between 1997-2019), in which up to 43 cytokines/chemokines and immune mediators were measured. Thus, we selected 110 People Living with HTLV-1 (PLwHTLV-1), of which 68 were neurologically asymptomatic (AS) at baseline and 42 HAM patients. Nine incident HAM cases were identified among 68 AS during follow-up. Using multivariate logistic regression, we found that lower IL-10, IL-4 and female sex were independent predictors of clinical progression to definite HAM (AUROC 0.91), and outperformed previously suggested biomarkers age, sex and proviral load (AUROC 0.77). Moreover, baseline IL-10 significantly predicted proviral load dynamics at follow-up in all PLwHTLV-1. In an exploratory analysis, we identified additional plasma biomarkers which were able to discriminate iHAM from either AS (IL6Rα, IL-27) or HAM (IL-29/IFN-λ1, Osteopontin, and TNFR2). In conclusion, female sex and low anti-inflammatory IL-10 and IL-4 are independent risk factors for incident HAM in PLwHTLV-1,while proviral load is not, in agreement with IL-10 being upstream of proviral load dynamics. Additional candidate biomarkers IL-29/IL-6R/TNFR2 represent plausible therapeutic targets for future clinical trials in HAM patients.


Asunto(s)
Biomarcadores , Virus Linfotrópico T Tipo 1 Humano , Interleucina-10 , Carga Viral , Humanos , Femenino , Masculino , Brasil/epidemiología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Interleucina-10/sangre , Biomarcadores/sangre , Persona de Mediana Edad , Adulto , Infecciones por HTLV-I/inmunología , Infecciones por HTLV-I/sangre , Infecciones por HTLV-I/diagnóstico , Provirus , Estudios de Cohortes , Paraparesia Espástica Tropical/sangre , Paraparesia Espástica Tropical/inmunología , Paraparesia Espástica Tropical/virología , Incidencia
6.
Nat Aging ; 3(6): 722-733, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37217661

RESUMEN

Coronavirus Disease 2019 (COVID-19) vaccination has resulted in excellent protection against fatal disease, including in older adults. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases among residents) by combining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosol monitoring, whole-genome phylogenetic analysis and immunovirological profiling of nasal mucosa by digital nCounter transcriptomics. Phylogenetic investigations indicated that each outbreak stemmed from a single introduction event, although with different variants (Delta, Gamma and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 d after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 transcriptomic and genomic signatures uncovered a unique IRF3 low/IRF7 high immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy, including environmental sampling, immunomonitoring and early antiviral therapy, should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.


Asunto(s)
COVID-19 , Humanos , Anciano , Filogenia , COVID-19/epidemiología , SARS-CoV-2/genética , Casas de Salud , Vacunación , Brotes de Enfermedades/prevención & control
7.
Nat Commun ; 12(1): 6243, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716338

RESUMEN

Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the respiratory microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n = 58) and lower (n = 35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We find that time in the intensive care unit and type of oxygen support, as well as associated treatments such as antibiotic usage, explain the most variation within the upper respiratory tract microbiome, while SARS-CoV-2 viral load has a reduced impact. Specifically, mechanical ventilation is linked to altered community structure and significant shifts in oral taxa previously associated with COVID-19. Single-cell transcriptomics of the lower respiratory tract of COVID-19 patients identifies specific oral bacteria in physical association with proinflammatory immune cells, which show higher levels of inflammatory markers. Overall, our findings suggest confounders are driving contradictory results in current COVID-19 microbiome studies and careful attention needs to be paid to ICU stay and type of oxygen support, as bacteria favored in these conditions may contribute to the inflammatory phenotypes observed in severe COVID-19 patients.


Asunto(s)
COVID-19/microbiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Humanos , Microbiota/fisiología , SARS-CoV-2/patogenicidad , Transcriptoma/genética
9.
Oncoimmunology ; 7(5): e1426423, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721391

RESUMEN

Adult T-cell leukemia (ATL) is an aggressive, chemotherapy-resistant CD4+CD25+ leukemia caused by HTLV-1 infection, which usually develops in a minority of patients several decades after infection. IFN + AZT combination therapy has shown clinical benefit in ATL, although its mechanism of action remains unclear. We have previously shown that an IFN-responsive FAS promoter polymorphism in a STAT1 binding site (rs1800682) is associated to ATL susceptibility and survival. Recently, CD4 T stem cell memory (TSCM) Fashi cells have been identified as the hierarchical cellular apex of ATL, but a possible link between FAS, apoptosis, proliferation and IFN response in ATL has not been studied. In this study, we found significant ex vivo antiproliferative, antiviral and immunomodulatory effects of IFN-α treatment in short-term culture of primary mononuclear cells from ATL patients (n = 25). Bayesian Network analysis allowed us to integrate ex vivo IFN-α response with clinical, genetic and immunological data from ATL patients, thereby revealing a central role for FAS -670 polymorphism and apoptosis in the coordinated mechanism of action of IFN-α. FAS genotype-dependence of IFN-induced apoptosis was experimentally validated in an independent cohort of healthy controls (n = 20). The same FAS -670 polymorphism also determined CD4 TSCM levels in a genome-wide twin study (p = 7 × 10-11, n = 460), confirming a genetic link between apoptosis and TSCM levels. Transcriptomic analysis and cell type deconvolution confirmed the FAS genotype/TSCM link and IFN-α-induced downregulation of CD4 TSCM-specific genes in ATL patient cells. In conclusion, ex vivo IFN-α treatment exerts a pleiotropic effect on primary ATL cells, with a genetic IFN/STAT1/Fas axis determining apoptosis vs. proliferation and underscoring the CD4 TSCM model of ATL leukemogenesis.

10.
Front Microbiol ; 9: 985, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872426

RESUMEN

HTLV-1-Associated Myelopathy (HAM/TSP) is a progressive neuroinflammatory disorder for which no disease-modifying treatment exists. Modest clinical benefit from type I interferons (IFN-α/ß) in HAM/TSP contrasts with its recently identified IFN-inducible gene signature. In addition, IFN-α treatment in vivo decreases proviral load and immune activation in HAM/TSP, whereas IFN-ß therapy decreases tax mRNA and lymphoproliferation. We hypothesize this "IFN paradox" in HAM/TSP might be explained by both cell type- and gene-specific effects of type I IFN in HTLV-1-associated pathogenesis. Therefore, we analyzed ex vivo transcriptomes of CD4+ T cells, PBMCs and whole blood in healthy controls, HTLV-1-infected individuals, and HAM/TSP patients. First, we used a targeted approach, simultaneously quantifying HTLV-1 mRNA (HBZ, Tax), proviral load and 42 host genes with known antiretroviral (anti-HIV) activity in purified CD4+ T cells. This revealed two major clusters ("antiviral/protective" vs. "proviral/deleterious"), as evidenced by significant negative (TRIM5/TRIM22/BST2) vs. positive correlation (ISG15/PAF1/CDKN1A) with HTLV-1 viral markers and clinical status. Surprisingly, we found a significant inversion of antiretroviral activity of host restriction factors, as evidenced by opposite correlation to in vivo HIV-1 vs. HTLV-1 RNA levels. The anti-HTLV-1 effect of antiviral cluster genes was significantly correlated to their adaptive chimp/human evolution score, for both Tax mRNA and PVL. Six genes of the proposed antiviral cluster underwent lentivirus-driven purifying selection during primate evolution (TRIM5/TRIM22/BST2/APOBEC3F-G-H), underscoring the cross-retroviral evolutionary imprint. Secondly, we examined the genome-wide type I IFN response in HAM/TSP patients, following short-term ex vivo culture of PBMCs with either IFN-α or IFN-ß. Microarray analysis evidenced 12 antiretroviral genes (including TRIM5α/TRIM22/BST2) were significantly up-regulated by IFN-ß, but not IFN-α, in HAM/TSP. This was paralleled by a significant decrease in lymphoproliferation by IFN-ß, but not IFN-α treatment. Finally, using published ex vivo whole blood transcriptomic data of independent cohorts, we validated the significant positive correlation between TRIM5, TRIM22, and BST2 in HTLV-1-infected individuals and HAM/TSP patients, which was independent of the HAM/TSP disease signature. In conclusion, our results provide ex vivo mechanistic evidence for the observed immunovirological effect of in vivo IFN-ß treatment in HAM/TSP, reconcile an apparent IFN paradox in HTLV-1 research and identify biomarkers/targets for a precision medicine approach.

11.
Front Immunol ; 8: 97, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261198

RESUMEN

Human T-cell lymphotropic virus (HTLV)-1 was the first human retrovirus to be associated to cancer, namely adult T-cell leukemia (ATL), but its pathogenesis remains enigmatic, since only a minority of infected individuals develops either ATL or the neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A functional FAS -670 polymorphism in an interferon (IFN)-regulated STAT1-binding site has been associated to both ATL and HAM/TSP susceptibility. Fashi T stem cell memory (Tscm) cells have been identified as the hierarchical apex of ATL, but have not been investigated in HAM/TSP. In addition, both FAS and STAT1 have been identified in an IFN-inducible HAM/TSP gene signature, but its pathobiological significance remains unclear. We comprehensively explored Fas expression (protein/mRNA) and function in lymphocyte activation, apoptosis, proliferation, and transcriptome, in PBMC from a total of 47 HAM/TSP patients, 40 asymptomatic HTLV-1-infected individuals (AC), and 58 HTLV-1 -uninfected healthy controls. Fas surface expression followed a two-step increase from HC to AC and from AC to HAM/TSP. In HAM/TSP, Fas levels correlated positively to lymphocyte activation markers, but negatively to age of onset, linking Fashi cells to earlier, more aggressive disease. Surprisingly, increased lymphocyte Fas expression in HAM/TSP was linked to decreased apoptosis and increased lymphoproliferation upon in vitro culture, but not to proviral load. This Fashi phenotype is HAM/TSP-specific, since both ex vivo and in vitro Fas expression was increased as compared to multiple sclerosis (MS), another neuroinflammatory disorder. To elucidate the molecular mechanism underlying non-apoptotic Fas signaling in HAM/TSP, we combined transcriptome analysis with functional assays, i.e., blocking vs. triggering Fas receptor in vitro with antagonist and agonist-, anti-Fas mAb, respectively. Treatment with agonist anti-Fas mAb restored apoptosis, indicating biased, but not defective Fas signaling in HAM/TSP. In silico analysis revealed biased Fas signaling toward proliferation and inflammation, driven by RelA/NF-κB. Correlation of Fas transcript levels with proliferation (but not apoptosis) was confirmed in HAM/TSP ex vivo transcriptomes. In conclusion, we demonstrated a two-step increase in Fas expression, revealing a unique Fashi lymphocyte phenotype in HAM/TSP, distinguishable from MS. Non-apoptotic Fas signaling might fuel HAM/TSP pathogenesis, through increased lymphoproliferation, inflammation, and early age of onset.

14.
PLoS Negl Trop Dis ; 6(7): e1729, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848768

RESUMEN

BACKGROUND: Clear therapeutic guidelines for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) are missing due to the lack of randomized double-blind controlled clinical trials. Moderate yet similar clinical benefit has been demonstrated for IFN-α and high-dose ascorbic acid (AA) monotherapy in a large open clinical trial. However, there is a lack of in vivo and in vitro studies exploring and comparing the effects of high-dose AA and IFN-α treatment in the context of HAM/TSP. Therefore, we performed the first comparative analysis of the ex vivo and in vitro molecular and cellular mechanisms of action of IFN-α and high-dose AA in HAM/TSP. PRINCIPAL FINDINGS: Through thymidine incorporation and quantification of Th1/Th2/Th17 cytokines, we demonstrate that high-dose AA displays differential and superior antiproliferative and immunomodulatory effects over IFN-α in HAM/TSP PBMCs ex vivo. In addition, high-dose AA, but not IFN-α, induced cell death in both HAM/TSP PBMCs and HTLV-1-infected T-cell lines MT-2 and MT-4. Microarray data combined with pathway analysis of MT-2 cells revealed AA-induced regulation of genes associated with cell death, including miR-155. Since miR-155 has recently been demonstrated to up-regulate IFN-γ, this microRNA might represent a novel therapeutic target in HAM/TSP, as recently demonstrated in multiple sclerosis, another neuroinflammatory disease. On the other hand, IFN-α selectively up-regulated antiviral and immune-related genes. CONCLUSIONS: In comparison to IFN-α, high-dose AA treatment has superior ex vivo and in vitro cell death-inducing, antiproliferative and immunomodulatory anti-HTLV-1 effects. Differential pathway activation by both drugs opens up avenues for targeted treatment in specific patient subsets.


Asunto(s)
Antineoplásicos/farmacología , Ácido Ascórbico/farmacología , Muerte Celular/efectos de los fármacos , Factores Inmunológicos/farmacología , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Adulto , Anciano , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Humanos , Interferón-alfa/farmacología , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Enfermedades de la Médula Espinal/tratamiento farmacológico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA