Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 19(6): e1011011, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276223

RESUMEN

Isoprothiolane (IPT) resistance has emerged in Magnaporthe oryzae, due to the long-term usage of IPT to control rice blast in China, yet the mechanisms of the resistance remain largely unknown. Through IPT adaptation on PDA medium, we obtained a variety of IPT-resistant mutants. Based on their EC50 values to IPT, the resistant mutants were mainly divided into three distinct categories, i.e., low resistance (LR, 6.5 ≤ EC50 < 13.0 µg/mL), moderate resistance 1 (MR-1, 13.0 ≤ EC50 < 25.0 µg/mL), and moderate resistance 2 (MR-2, 25.0 ≤ EC50 < 35.0 µg/mL). Molecular analysis of MoIRR (Magnaporthe oryzae isoprothiolane resistance related) gene demonstrated that it was associated only with the moderate resistance in MR-2 mutants, indicating that other mechanisms were associated with resistance in LR and MR-1 mutants. In this study, we mainly focused on the characterization of low resistance to IPT in M. oryzae. Mycelial growth and conidial germination were significantly reduced, indicating fitness penalties in LR mutants. Based on the differences of whole genome sequences between parental isolate and LR mutants, we identified a conserved MoVelB gene, encoding the velvet family transcription factor, and genetic transformation of wild type isolate verified that MoVelB gene was associated with the low resistance. Based on molecular analysis, we further demonstrated that the velvet family proteins VelB and VeA were indispensable for IPT toxicity and the deformation of the VelB-VeA-LaeA complex played a vital role for the low IPT-resistance in M. oryzae, most likely through the down-regulation of the secondary metabolism-related genes or CYP450 genes to reduce the toxicity of IPT.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Tiofenos , Oryza/genética , Enfermedades de las Plantas
2.
Plant Dis ; 106(9): 2415-2423, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35171643

RESUMEN

Peach bacterial spot caused by Xanthomonas arboricola pv. pruni has become widespread in most peach-producing areas of China and has caused devastating losses to the peach industry. However, little is known about the population biology and epidemiology of X. arboricola pv. pruni in China, thus no effective management strategy is available. Altogether, 321 symptomatic samples of peach bacterial spot from 12 provinces in China were collected from which 612 bacterial isolates were obtained. Based on 16S rDNA sequence comparison in GenBank, the obtained isolates were identified as Pantoea spp. (514) and Xanthomonas spp. (98). The pathogenicity test demonstrated that the causal agent of the peach bacterial spot was the Xanthomonas spp. instead of the Pantoea spp. Based on morphological observation, physiological and biochemical characterization, and molecular identification, the Xanthomonas spp. were further identified to be X. arboricola pv. pruni. Then, 41 X. arboricola pv. pruni isolates representing different populations were selected and analyzed with repetitive element sequence based-PCR and intersimple sequence repeat markers to understand the genetic diversity and population structure along with four X. arboricola pv. pruni isolates from plum and three isolates of X. arboricola pv. juglandis as comparison. A total of 98 polymorphic alleles were identified, with a mean value of percentage of polymorphic loci of 14. Genetic diversity and phylogenetic analysis revealed the profound heterogeneity between X. arboricola pv. juglandis and X. arboricola pv. pruni, moderate genetic differentiation within X. arboricola pv. pruni, and obvious host specificity but weak geographical differentiation in X. arboricola population. Finally, the efficiency of bactericides on X. arboricola pv. pruni was evaluated in vitro and in vivo. The parallel repeated field trials in two orchards demonstrated that 80% Mancozeb (1:800) and 47% Kocide (1:800, 1:1,500, and 1:2,000) had excellent control efficacies for X. arboricola pv. pruni, especially as the control efficacy of Kocide could even reach 90%. This study conducted a systematic investigation for the occurrence, population variance, and chemical control of X. arboricola pv. pruni. It improved the understanding of the pathogen populations of peach bacterial spot in China and provided solid theoretical and practical guidance for X. arboricola pv. pruni control.


Asunto(s)
Xanthomonas , Variación Genética , Filogenia , Reacción en Cadena de la Polimerasa , Xanthomonas/genética
3.
Water Sci Technol ; 84(12): 3641-3652, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34928832

RESUMEN

The present study deals with the synthesis of zeolite-loaded FeOOH@ZnO by hydrothermal method and investigates the effects of coexisting SO32- and PO43- ions in the aqueous solution on the adsorption performance for S2-. The results showed that the HNO3-modified zeolite loaded with FeOOH@ZnO (FeOOH@ZnO/HZ) resulted in a maximum S2- removal rate of ≈98%. The adsorbent's performance on removing S2- was significantly enhanced, compared with NaOH and ZnCl2-modified zeolites loaded with FeOOH@ZnO, and the adsorption was proved to be a heat-absorbing process. When SO32- and PO43- coexisted with S2-, SO32- and PO43- had a significant influence on the adsorption properties of FeOOH@ZnO/HZ. When three ions of S2-, SO32- and PO43- were present simultaneously, the adsorption performance of FeOOH@ZnO/HZ on S2- was further, and the removal rate dropped to about 80%. Moreover, FeOOH@ZnO/HZ also adsorbed PO43- and SO32- in the system containing multiple ions, but the adsorption rates of PO43- and SO32- were much lower than S2-. This indicated that the adsorption of S2- in the presence of FeOOH@ZnO/HZ dominates under competitive conditions.


Asunto(s)
Zeolitas , Óxido de Zinc , Adsorción
4.
J Physiol ; 596(20): 5033-5050, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144059

RESUMEN

KEY POINTS: It has been known for some time that sensory information of one type can bias the spatial perception of another modality. However, there is a lack of evidence of this occurring in individual neurons. In the present study, we found that the spatial receptive field of superior colliculus multisensory neurons could be dynamically shifted by a preceding stimulus in a different modality. The extent to which the receptive field shifted was dependent on both temporal and spatial gaps between the preceding and following stimuli, as well as the salience of the preceding stimulus. This result provides a neural mechanism that could underlie the process of cross-modal spatial calibration. ABSTRACT: Psychophysical studies have shown that the different senses can be spatially entrained by each other. This can be observed in certain phenomena, such as ventriloquism, in which a visual stimulus can attract the perceived location of a spatially discordant sound. However, the neural mechanism underlying this cross-modal spatial recalibration has remained unclear, as has whether it takes place dynamically. We explored these issues in multisensory neurons of the cat superior colliculus (SC), a midbrain structure that involves both cross-modal and sensorimotor integration. Sequential cross-modal stimulation showed that the preceding stimulus can shift the receptive field (RF) of the lagging response. This cross-modal spatial calibration took place in both auditory and visual RFs, although auditory RFs shifted slightly more. By contrast, if a preceding stimulus was from the same modality, it failed to induce a similarly substantial RF shift. The extent of the RF shift was dependent on both temporal and spatial gaps between the preceding and following stimuli, as well as the salience of the preceding stimulus. A narrow time gap and high stimulus salience were able to induce larger RF shifts. In addition, when both visual and auditory stimuli were presented simultaneously, a substantial RF shift toward the location-fixed stimulus was also induced. These results, taken together, reveal an online cross-modal process and reflect the details of the organization of SC inter-sensory spatial calibration.


Asunto(s)
Colículos Superiores/fisiología , Animales , Percepción Auditiva , Gatos , Potenciales Evocados , Masculino , Colículos Superiores/citología , Percepción Visual
5.
Endocr J ; 64(7): 685-693, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28529245

RESUMEN

To explore the role of NF-κB activation in the development of insulin resistance and investigate whether or not that the inhibition of NF-κB activation by PDTC will improve the insulin resistance of L6 cells exposed to H2O2. L6 cells were treated with H2O2, PDTC or both H2O2 and PDTC for 4 hours. The uptake of glucose with stimulation of insulin, the expression of P38-MAPK, p- P38-MAPK, NF-κBp65, p- NF-κBp65, IRS-1, IRS-2, p-IRS-2, PI3K, IκBα, p- IκBα, caspase-8 and GLUT4, the production of ROS, TNF-α, IL-6 and IL-1ß as well as the apoptosis rate of L6 cells were determined and compared in L6 treated with H2O2 alone or both H2O2 and PDTC. Compared with the L6 cells treated with H2O2 alone, the L6 cells treated with both H2O2 and PDTC showed (1) significantly lower production of ROS, TNF-α, IL-6 and IL-1ß; (2) significantly decreased expression of P38-MAPK, p- P38-MAPK and NF-κBp65, p- NF-κBp65, p- IκBα and caspase-8; (3) significantly lower rate of apoptosis; (4) significantly higher expression of IRS-2, p-IRS-2 (Tyr 612), PI3K and GLUT4; (5) significantly higher uptake of glucose with stimulation of insulin; (6) significantly increased expression of Bcl2 and decreased ratio of Bax to Bcl2. Based on the findings of the present study, inhibition of NF-κB activation by PDTC would improve the insulin resistance of L6 cells exposed to H2O2.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Resistencia a la Insulina , Músculo Esquelético/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Prolina/análogos & derivados , Tiocarbamatos/farmacología , Absorción Fisiológica/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Peróxido de Hidrógeno/toxicidad , Mediadores de Inflamación/metabolismo , Cinética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , FN-kappa B/agonistas , FN-kappa B/metabolismo , Oxidantes/toxicidad , Prolina/farmacología , Ratas
6.
Antioxidants (Basel) ; 13(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38539809

RESUMEN

Donkey milk is a traditional medicinal food with various biological activities. However, its production is very low, and lactating donkeys often experience oxidative stress, leading to a further decline in milk yield. In this study, we supplemented the diets of lactating donkeys with yeast selenium (SY) to investigate its effects on lactation performance, antioxidant status, and immune responses, and we expected to determine the optimum additive level of SY in the diet. For this study, 28 healthy lactating Dezhou donkeys with days in milk (DIM, 39.93 ± 7.02 d), estimated milk yield (EMY, 3.60 ± 0.84 kg/d), and parity (2.82 ± 0.48) were selected and randomly divided into 4 groups of 7 donkeys in each: Group SY-0 (control), Group SY-0.15, Group SY-0.3, and Group SY-0.5, with selenium supplementation of 0, 0.15, 0.3, and 0.5 mg of Se/kg DM (in form of SY) to the basal diet, respectively. The results showed a dose-dependent increase in milk yield, milk component yield, milk protein production efficiency, milk production efficiency, the activities of glutathione peroxidases (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), as well as the content of serum interleukin-10 (IL-10), white blood cells (WBC), lymphocytes (LYM), red blood cells (RBC), hematocrit, plasma selenium, and milk selenium. Conversely, it presented a dose-dependent decrease in the activity of nitric oxide synthase (iNOS) and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interferon-γ (IFN-γ). In conclusion, the results confirmed that dietary supplementation with SY can improve lactation performance, antioxidant status, and immune responses in lactating donkeys, and the recommended dose of SY was 0.3 mg/kg.

7.
Front Microbiol ; 13: 874497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464942

RESUMEN

The point mutation R343W in MoIRR, a putative Zn2Cys6 transcription factor, introduces isoprothiolane (IPT) resistance in Magnaporthe oryzae. However, the function of MoIRR has not been characterized. In this study, the function of MoIRR was investigated by subcellular localization observation, transcriptional autoactivation test, and transcriptomic analysis. As expected, GFP-tagged MoIRR was translocated in the nucleus, and its C-terminal could autonomously activate the expression of reporter genes HIS3 and α-galactosidase in absence of any prey proteins in Y2HGold, suggesting that MoIRR was a typical transcription factor. Transcriptomic analysis was then performed for resistant mutant 1a_mut (R343W), knockout transformant ΔMoIRR-1, and their parental wild-type isolate H08-1a. Upregulated genes in both 1a_mut and ΔMoIRR-1 were involved in fungicide resistance-related KEGG pathways, including the glycerophospholipid metabolism and Hog1 MAPK pathways. All MoIRR deficiency-related IPT-resistant strains exhibited increased susceptibility to fludioxonil (FLU) that was due to the upregulation of Hog1 MAPK pathway genes. The results indicated a correlation between FLU susceptibility and MoIRR deficiency-related IPT resistance in M. oryzae. Thus, using a mixture of IPT and FLU could be a strategy to manage the IPT-resistant populations of M. oryzae in rice fields.

8.
Front Plant Sci ; 12: 740177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887884

RESUMEN

Peach bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a devastating disease worldwide and frequently causes massive economic losses. In recent years, it has become a pandemic outbreak in most peach production areas of China, especially on precocious peaches in the middle reach of the Yangtze River. Rapid, user-friendly detection is extremely important to make the correct diagnosis and develop suitable control strategies. In this study, we described a recombinase polymerase amplification (RPA)/Cas12a-based system that combines RPA and CRISPR/Cas12a for Xap identification. A total of three crRNAs were designed to target a highly conserved ABC transporter ATP-binding protein-encoding gene ftsX to make specific detection of Xap. Results showed that crRNA 2 and crRNA 3 could get consistent detection for Xap. To realize the visualization of detection results, we additionally introduced FQ-reporter and FB-reporter. The developed method was highly sensitive and could detect as low as 10-18 M Xap gDNA with a mini-UV torch, corresponding to 1.63 copies/µl or 8.855 fg/µl gDNA of Xap, while with lateral flow strips, the sensitivity was 10-17 M. In addition, this method could specifically detect Xap from other closely related bacteria or pathogens associated with peach diseases. Furthermore, this method could make correct identification for Xap with crude DNA using NaOH-based extraction (3 min) directly from diseased peach samples. Considering that the developed method could get results within 2 h and could be performed at 37°C (body temperature), it is promising to be applied for Xap diagnosis and monitoring in fields.

9.
Front Microbiol ; 9: 2608, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429837

RESUMEN

Isoprothiolane (IPT), a systemic fungicide, has been applied to control rice blast since the 1970s. Although resistance to IPT has been observed, the mechanism of resistance still has not been fully elucidated. In this study, nucleotide polymorphisms were detected between two IPT-resistant mutants generated in the lab, and their parental wild type isolates using a whole-genome sequencing approach. In the genomes of the two resistant mutants, single point mutations were identified in a gene encoding a Zn2Cys6 transcription factor-like protein. Notably, either knocking out the gene or replacing the wild type allele with the mutant allele (R343W) in a wild type isolate resulted in resistance to IPT, indicating that the gene is associated with IPT resistance, and thus was designated as MoIRR (Magnaporthe oryzae isoprothiolane resistance related). Along with point mutations R343W in mutant 1a_mut, and R345C in 1c_mut, a 16 bp insertion in 6c_mut was also located in the Fungal_TF_MHR domain of MoIRR, revealing that this domain may be the core element for IPT resistance. In addition, IPT-resistant mutants and transformants showed cross-resistance with iprobenfos (IBP), which was consistent with previous observations. These results indicated that MoIRR is strongly connected to resistance to choline biosynthesis inhibitor (CBI), and further work should focus on investigating downstream effects of MoIRR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA