Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 50(5): 2587-2602, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137201

RESUMEN

The histone acetyltransferase p300 (also known as KAT3B) is a general transcriptional coactivator that introduces the H3K27ac mark on enhancers triggering their activation and gene transcription. Genome-wide screenings demonstrated that a large fraction of long non-coding RNAs (lncRNAs) plays a role in cellular processes and organ development although the underlying molecular mechanisms remain largely unclear (1,2). We found 122 lncRNAs that interacts directly with p300. In depth analysis of one of these, lncSmad7, is required to maintain ESC self-renewal and it interacts to the C-terminal domain of p300. lncSmad7 also contains predicted RNA-DNA Hoogsteen forming base pairing. Combined Chromatin Isolation by RNA precipitation followed by sequencing (ChIRP-seq) together with CRISPR/Cas9 mutagenesis of the target sites demonstrate that lncSmad7 binds and recruits p300 to enhancers in trans, to trigger enhancer acetylation and transcriptional activation of its target genes. Thus, these results unveil a new mechanism by which p300 is recruited to the genome.


Asunto(s)
Histonas , ARN Largo no Codificante , Acetilación , Acetiltransferasas/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos , Histonas/genética , Histonas/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
2.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948395

RESUMEN

Smad7 has been identified as a negative regulator of the transforming growth factor TGF-ß pathway by direct interaction with the TGF-ß type I receptor (TßR-I). Although Smad7 has also been shown to play TGF-ß unrelated functions in the cytoplasm and in the nucleus, a comprehensive analysis of its nuclear function has not yet been performed. Here, we show that in ESCs Smad7 is mainly nuclear and acts as a general transcription factor regulating several genes unrelated to the TGF-ß pathway. Loss of Smad7 results in the downregulation of several key stemness master regulators, including Pou5f1 and Zfp42, and in the upregulation of developmental genes, with consequent loss of the stem phenotype. Integrative analysis of genome-wide mapping data for Smad7 and ESC self-renewal and pluripotency transcriptional regulators revealed that Smad7 co-occupies promoters of highly expressed key stemness regulators genes, by binding to a specific consensus response element NCGGAAMM. Altogether, our data establishes Smad7 as a new, integral component of the regulatory circuitry that controls ESC identity.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Proteína smad7/genética , Activación Transcripcional , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Eliminación de Gen , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/genética
3.
Cell Biol Int ; 44(2): 610-620, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31743535

RESUMEN

Previous reports indicated that integrins associated signals are tightly related to tumor progression. Here, we observed elevated expression of integrin α2ß1 in tumor tissues from microtubule-directed chemotherapeutic drugs (MDCDs) resistant patients compared with the samples from chemosensitive patients. More importantly, we sorted the integrin α2ß1+ tumor cells and found those cells revealed high MDCDs resistance, whereas MDCDs shows effective cytotoxicity to those integrin α2ß1- tumor cells in vitro and in vivo. Mechanistically, we demonstrated that integrin α2ß1 could induce MDCDs resistance through the activation of the PI3K/AKT pathway. Applying MPEG-PLA to co-encapsulate the integrin α2ß1 inhibitor E7820 and MDCDs could effectively reverse MDCDs resistance, resulting in enhanced anticancer effects while avoiding potential systemic toxicity in vitro and in vivo. In conclusion, the expression of integrin α2ß1 contributes to MDCDs resistance, while applying E7820 combination treatment by MPEG-PLA nanoparticles could reverse the resistance.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Indoles/farmacología , Integrina alfa2beta1/antagonistas & inhibidores , Microtúbulos/patología , Nanopartículas/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Sulfonamidas/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Ratones , Ratones Desnudos , Nanopartículas/química , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
BMC Genomics ; 18(1): 725, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28899357

RESUMEN

BACKGROUND: In birds, blue-green eggshell color (BGEC) is caused by biliverdin, a bile pigment derived from the degradation of heme and secreted in the eggshell by the shell gland. Functionally, BGEC might promote the paternal investment of males in the nest and eggs. However, little is known about its formation mechanisms. Jinding ducks (Anas platyrhynchos) are an ideal breed for research into the mechanisms, in which major birds lay BGEC eggs with minor individuals laying white eggs. Using this breed, this study aimed to provide insight into the mechanisms via comparative transcriptome analysis. RESULTS: Blue-shelled ducks (BSD) and white-shelled ducks (WSD) were selected from two populations, forming 4 groups (3 ducks/group): BSD1 and WSD1 from population 1 and BSD2 and WSD2 from population 2. Twelve libraries from shell glands were sequenced using the Illumina RNA-seq platform, generating an average of 41 million clean reads per library, of which 55.9% were mapped to the duck reference genome and assembled into 31,542 transcripts. Expression levels of 11,698 genes were successfully compared between all pairs of 4 groups. Of these, 464 candidate genes were differentially expressed between cross-phenotype groups, but not for between same-phenotype groups. Gene Ontology (GO) annotation showed that 390 candidate genes were annotated with 2234 GO terms. No candidate genes were directly involved in biosynthesis or transport of biliverdin. However, the integral components of membrane, metal ion transport, cholesterol biosynthesis, signal transduction, skeletal system development, and chemotaxis were significantly (P < 0.05) overrepresented by candidate genes. CONCLUSIONS: This study identified 464 candidate genes associated with duck BGEC, providing valuable information for a better understanding of the mechanisms underlying this trait. Given the involvement of membrane cholesterol contents, ions and ATP levels in modulating the transport activity of bile pigment transporters, the data suggest a potential association between duck BGEC and the transport activity of the related transporters.


Asunto(s)
Patos , Cáscara de Huevo/metabolismo , Perfilación de la Expresión Génica , Pigmentación/genética , Animales , Transporte Biológico/genética , Minerales/metabolismo , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN
5.
Genet Mol Biol ; 39(3): 380-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27560838

RESUMEN

The very low-density lipoprotein receptor (VLDLR) transports egg yolk precursors into oocytes. However, our knowledge of the distribution patterns of VLDLR variants among breeds and their relationship to egg production is still incomplete. In this study, eight single nucleotide polymorphisms (SNPs) that account for 87% of all VLDLR variants were genotyped in Nick Chick (NC, n=91), Lohmann Brown (LohB, n=50) and Lueyang (LY, n=381) chickens, the latter being an Chinese indigenous breed. Egg production by NC and LY chickens was recorded from 17 to 50 weeks. Only four similar haplotypes were found in NC and LohB, of which two accounted for 100% of all NC haplotypes and 92.5% of LohB haplotypes. In contrast, there was considerable haplotypic diversity in LY. Comparison of egg production in LY showed that hens with NC-like haplotypes had a significantly higher production (p < 0.05) than those without the haplotypes. However, VLDLR expression was not significantly different between the haplotypes. These findings indicate a divergence in the distribution of VLDLR haplotypes between selected and non-selected breeds and suggest that the near fixation of VLDLR variants in NC and LohB is compatible with signature of selection. These data also support VLDLR as a candidate gene for modulating egg production.

6.
Nat Commun ; 14(1): 367, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690616

RESUMEN

The correct establishment of DNA methylation patterns during mouse early development is essential for cell fate specification. However, the molecular targets as well as the mechanisms that determine the specificity of the de novo methylation machinery during differentiation are not completely elucidated. Here we show that the DNMT3B-dependent DNA methylation of key developmental regulatory regions at epiblast-like cells (EpiLCs) provides an epigenetic priming that ensures flawless commitment at later stages. Using in vitro stem cell differentiation and loss of function experiments combined with high-throughput genome-wide bisulfite-, bulk-, and single cell RNA-sequencing we dissected the specific role of DNMT3B in cell fate. We identify DNMT3B-dependent regulatory elements on the genome which, in Dnmt3b knockout (3BKO), impair the differentiation into meso-endodermal (ME) progenitors and redirect EpiLCs towards the neuro-ectodermal lineages. Moreover, ectopic expression of DNMT3B in 3BKO re-establishes the DNA methylation of the master regulator Sox2 super-enhancer, downmodulates its expression, and restores the expression of ME markers. Taken together, our data reveal that DNMT3B-dependent methylation at the epiblast stage is essential for the priming of the meso-endodermal lineages and provide functional characterization of the de novo DNMTs during EpiLCs lineage determination.


Asunto(s)
Endodermo , Células Madre Embrionarias de Ratones , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Endodermo/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Diferenciación Celular , Linaje de la Célula , Metilación de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA