Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 22(5): 1825-30, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26679978

RESUMEN

The study of chemical reactions between gold-containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O(-.)), the role of gold in the systems without O(-.) is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2 VO3(+) clusters with closed-shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C-H activation. The Au-Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2 VO3(+) and bare Au2(+) demonstrates that Au2 VO3(+) not only retains the property of bare Au2(+) that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.

2.
Chemphyschem ; 17(8): 1112-8, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26714587

RESUMEN

The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping.

3.
J Phys Chem A ; 119(46): 11265-70, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26509961

RESUMEN

Laser ablation generated AuC3H(-) anions were skimmed into a time-of-flight mass spectrometer (TOF-MS) and selected with a mass gate. Photoelectron spectra of AuC3H(-) were recorded using the velocity map imaging technique at several photon energies. The experimental spectra, quantum chemistry calculations, and Franck-Condon simulations suggest that the AuC3H(-) cluster has four structure isomers, including one unexpected structure of [C═C═C-Au-H](-). When AuC3H(-) is compared with C3H2(-), introduction of gold into the hydrocarbon system results in the much lower isomerization barriers.

4.
Angew Chem Int Ed Engl ; 54(40): 11720-4, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26267648

RESUMEN

Investigations on the reactivity of atomic clusters have led to the identification of the elementary steps involved in catalytic CO oxidation, a prototypical reaction in heterogeneous catalysis. The atomic oxygen species O(.-) and O(2-) bonded to early-transition-metal oxide clusters have been shown to oxidize CO. This study reports that when an Au2 dimer is incorporated within the cluster, the molecular oxygen species O2 (2-) bonded to vanadium can be activated to oxidize CO under thermal collision conditions. The gold dimer was doped into Au2 VO4 (-) cluster ions which then reacted with CO in an ion-trap reactor to produce Au2 VO3 (-) and then Au2 VO2 (-) . The dynamic nature of gold in terms of electron storage and release promotes CO oxidation and O-O bond reduction. The oxidation of CO by atomic clusters in this study parallels similar behavior reported for the oxidation of CO by supported gold catalysts.

5.
Chemistry ; 20(19): 5580-3, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24737410

RESUMEN

The first example of a metal oxide cluster anion, La6 O10 (-) that can activate methane under ambient conditions is reported. This reaction is facilitated by the oxygen-centered radical (O(-⋅) ) and follows the hydrogen atom transfer mechanism. The La6 O10 (-) has a high vertical electron detachment energy (VDE=4.06 eV) and a high symmetry (C4v ).

6.
Chemistry ; 20(4): 1167-75, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24338790

RESUMEN

The activation of C-H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O(-·)) is an important species in C-H activation. The mechanistic details of C-H activation by O(-·) radicals can be well understood by studying the reactions between O(-·) containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n-butane was studied by using a high-resolution time-of-flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n-butane by (Sc2O3)(N)O(-) (N=1-18) clusters was observed. The reactivity of (Sc2O3)(N)O(-) (N=1-18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13(-)) and 12 (Sc24O37(-)). Larger (Sc2O3)(N)O(-) clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)(N)O(-) (N=1-5) clusters, which were found to contain the O(-·) radicals as the active sites. The local charge environment around the O(-·) radicals was demonstrated to control the experimentally observed size-dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O(-·) containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C-H bond activation.

7.
Chemphyschem ; 15(18): 4117-25, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25208512

RESUMEN

The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium-doped vanadium cluster cations CeV2O7(+) are generated by laser ablation, mass-selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time-of-flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen-atom transfer , 2) double oxygen-atom transfer , and 3) C=C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7(+), which gives rise to C=C bond cleavage of ethene. Neither Ce(x)O(y)(±) nor V(x)O(y)(±) alone possess the necessary topological and electronic properties to bring about such a reaction.

8.
J Am Chem Soc ; 135(8): 2991-8, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23368886

RESUMEN

Titanium and zirconium oxide cluster anions with dimensions up to nanosize are prepared by laser ablation and reacted with carbon monoxide in a fast low reactor. The cluster reactions are characterized by time-of-flight mass spectrometry and density functional theory calculations. The oxygen atom transfers from (TiO(2))(n)O(-) (n = 3-25) to CO and formations of (TiO(2))(n)(-) are observed, whereas the reactions of (ZrO(2))(n)O(-) (n = 3-25) with CO generate the CO addition products (ZrO(2))(n)OCO(-), which lose CO(2) upon the collisions (studied for n = 3-9) with a crossed helium beam. The computational study indicates that the (MO(2))(n)O(-) (M = Ti, Zr; n = 3-8) clusters are atomic radical anion (O(-)) bonded systems, and the energetics for CO oxidation by the O(-) radicals to form CO(2) is strongly dependent on the metals as well as the cluster size for the titanium system. Atomic oxygen radical anions are important reactive intermediates, while it is difficult to capture and characterize them for condensed phase systems. The reactivity pattern of the O(-)-bonded (TiO(2))(n)O(-) and (ZrO(2))(n)O(-) correlates very well with different behaviors of titania and zirconia supports in the low-temperature catalytic CO oxidation.

9.
J Chem Phys ; 137(21): 214311, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23231235

RESUMEN

Structures of stoichiometric (La(2)O(3))(n) (n = 1-6) clusters have been systematically studied by theoretical calculations. Global minimum structures for these clusters are determined by genetic algorithm based global optimizations at density functional level. The ground state structure for La(6)O(9) was found to be highly symmetric with point group O(h) and the centered oxygen atom has the coordination number as large as six, which is the same as the highest coordination number of oxygen atoms in bulk La(2)O(3). Analysis of the binding energies shows that La(6)O(9) has a high stability among the studied clusters. The energies of the highest occupied∕lowest unoccupied molecular orbitals, vertical ionization energy, and vertical electron affinity of each cluster are provided. Electronic structure of La(6)O(9) is discussed by analysis of the frontier molecular orbitals and unpaired spin density distributions of charged clusters.

10.
Dalton Trans ; 44(7): 3128-35, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25573178

RESUMEN

Cerium-vanadium oxide cluster cations CeVO5(+) were generated by laser ablation, mass-selected using a quadrupole mass filter, thermalized through collisions with helium atoms, and then reacted with ethene molecules in a linear ion trap reactor. The cluster reactions have been characterized by time-of-flight mass spectrometry and density functional theory calculations. The CeVO5(+) cluster has a closed-shell electronic structure and contains a peroxide (O2(2-)) unit. The cluster bonded O2(2-) species is reactive enough to oxidize a C2H4 molecule to generate C2H4O2 that can be an acetic acid molecule. Atomic oxygen radicals (O(-)˙), superoxide radicals (O2(-)˙), and peroxides are the three common reactive oxygen species. The reactivity of cluster bonded O(-)˙ and O2(-)˙ radicals has been widely studied while the O2(2-) species were generally thought to be much less reactive or inert toward small molecules under thermal collision conditions. This work is among the first to report the reactivity of the peroxide unit on transition metal oxide clusters with hydrocarbon molecules, to the best of our knowledge.

11.
J Phys Chem Lett ; 5(21): 3890-4, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26278765

RESUMEN

Laser-ablation-generated AuCeO2(+) and CeO2(+) oxide clusters were mass-selected using a quadrupole mass filter and reacted with H2 in an ion trap reactor at ambient conditions. The reactions were characterized by mass spectrometry and density functional theory calculations. The gold-cerium bimetallic oxide cluster AuCeO2(+) is more reactive in H2 activation than the pure cerium oxide cluster CeO2(+). The gold atom is the active adsorption site and facilitates the heterolytic cleavage of H2 in collaboration with the separated O(2-) ion of the CeO2 support. To the best of our knowledge, this is the first example of thermal H2 activation by a closed-shell atomic cluster, which provides molecular-level insights into the single gold atom catalysis over metal oxide supports.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA