Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809823

RESUMEN

Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene "CaDHN3" from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•- contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.


Asunto(s)
Capsicum/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico , Adaptación Biológica , Arabidopsis/fisiología , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Activación Transcripcional
2.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018553

RESUMEN

Dehydrins (DHNs), as a sub-family of group two late embryogenesis-abundant (LEA) proteins, have attracted considerable interest owing to their functions in enhancing abiotic stress tolerance in plants. Our previous study showed that the expression of CaDHN5 (a dehydrin gene from pepper) is strongly induced by salt and osmotic stresses, but its function was not clear. To understand the function of CaDHN5 in the abiotic stress responses, we produced pepper (Capsicum annuum L.) plants, in which CaDHN5 expression was down-regulated using VIGS (Virus-induced Gene Silencing), and transgenic Arabidopsis plants overexpressing CaDHN5. We found that knock-down of CaDHN5 suppressed the expression of manganese superoxide dismutase (MnSOD) and peroxidase (POD) genes. These changes caused more reactive oxygen species accumulation in the VIGS lines than control pepper plants under stress conditions. CaDHN5-overexpressing plants exhibited enhanced tolerance to salt and osmotic stresses as compared to the wild type and also showed increased expression of salt and osmotic stress-related genes. Interestingly, our results showed that many salt-related genes were upregulated in our transgenic Arabidopsis lines under salt or osmotic stress. Taken together, our results suggest that CaDHN5 functions as a positive regulator in the salt and osmotic stress signaling pathways.


Asunto(s)
Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Capsicum/fisiología , Sequías , Genes de Plantas , Osmorregulación , Presión Osmótica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Tolerancia a la Sal
3.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861623

RESUMEN

Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. To authenticate the function of CaDHN4 in cold- and salt-stress responses and abscisic acid (ABA) sensitivity, we reduced the CaDHN4 expression using virus-induced gene silencing (VIGS), and overexpressed the CaDHN4 in Arabidopsis. We found that silencing of CaDHN4 reduced the growth of pepper seedlings and CaDHN4-silenced plants exhibited more serious wilting, higher electrolyte leakage, and more accumulation of ROS in the leaves compared to pTRV2:00 plants after cold stress, and lower chlorophyll contents and higher electrolyte leakage compared to pTRV2:00 plants under salt stress. However, CaDHN4-overexpressing Arabidopsis plants had higher seed germination rates and post-germination primary root growth, compared to WT plants under salt stress. In response to cold and salt stresses, the CaDHN4-overexpressed Arabidopsis exhibited lower MDA content, and lower relative electrolyte leakage compared to the WT plants. Under ABA treatments, the fresh weight and germination rates of transgenic plants were higher than WT plants. The transgenic Arabidopsis expressing a CaDHN4 promoter displayed a more intense GUS staining than the normal growth conditions under treatment with hormones including ABA, methyl jasmonate (MeJA), and salicylic acid (SA). Our results suggest that CaDHN4 can protect against cold and salt stresses and decrease ABA sensitivity in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/crecimiento & desarrollo , Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Capsicum/genética , Núcleo Celular/metabolismo , Respuesta al Choque por Frío , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino
4.
Front Plant Sci ; 11: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117364

RESUMEN

NAC (NAM, ATAF1/2, and CUC2) proteins are the plant-specific transcription factors (TFs) which are important in plant response to abiotic stresses. However, knowledge about the functional role that NACs play in pepper abiotic stress tolerance is limited. In this study, we isolated a NAC TF gene, CaNAC035, from pepper (Capsicum annuum L.), where the protein is localized in the nucleus and functions as a transcriptional activator. CaNAC035 expression is induced by low and high temperatures, osmotic stress, salt, gibberellic acid (GA), methyl-jasmonic acid (MeJA), salicylic acid (SA), and abscisic acid (ABA). To understand the function of CaNAC035 in the abiotic stress responsep, we used virus-induced gene silencing in pepper to knockdown the CaNAC035 and overexpressed the CaNAC035 in Arabidopsis. The results showed that pepper seedlings in which CaNAC035 was silenced, showed more damage than the control pepper plants after cold, NaCl, and mannitol treatments. Correspondingly increased electrolyte leakage, a higher level of malondialdehyde (MDA), H2O2, and superoxide radicals were found after cold treatments. CaNAC035-silenced seedlings exhibited lower chlorophyll content while CaNAC035-overexpressed Arabidopsis plants had higher germination rate and fresh weight after mannitol and NaCl treatments. We also reported 18 proteins that potentially interact with CaNAC035 and may participate in processes such as the stress response, resistance, and photosynthesis. Our results suggest that CaNAC035 is a positive regulator of abiotic stress tolerance in pepper which acts through multiple signaling pathways.

5.
Plant Sci ; 291: 110346, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31928677

RESUMEN

NAC (NAM, ATAF1/2 and CUC2) proteins are plant-specific transcription factors (TFs) that are important in plant abiotic stress responses. In this study we isolated a NAC gene from Capsicum annuum leaves, designated as CaNAC064. We characterized the amino acid sequence of CaNAC064 and found that it contain conserved domains of the NAC family, including a highly conserved N-terminus domain and a highly variable C-terminus domain. Expression analysis showed that the 40C, 400C, salicylic acid (SA) and abscisic acid (ABA) treatments strongly induced the expression of CaNAC064 through silencing of CaNAC064 in pepper and overexpressing in Arabidopsis. CaNAC064-silenced pepper plants exhibited more serious wilting, higher MDA contents and chilling injury index, lower proline content, and more accumulation of ROS in the leaves after cold stress. The CaNAC064-overexpressing Arabidopsis plants exhibited lower MDA content, chilling injury index and relative electrolyte leakage content as compared to WT plants under cold stress. Transcriptional activation activity analysis indicated that CaNAC064 has transcriptional activation activity in the 691-1071 bp key region. We identified 45 proteins that putatively interact with CaNAC064 using the Yeast Two-Hybrid method. According to the Yeast Two-Hybrid and BIFC results, CaNAC064 interacted with low temperature-induced haplo-proteinase proteins in plant cell. These results suggested that CaNAC064 positively modulates plant cold-tolerance, laying the foundation for future investigations into the role of NACs as regulatory proteins of cold tolerance in plants.


Asunto(s)
Capsicum/fisiología , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Capsicum/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
Plant Sci ; 280: 164-174, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30823994

RESUMEN

MADS-box family transcription factors play essential roles in the growth and development of plants, and some MADS-box genes have also been found to participate in the stress-response. At present, little information regarding stress-related MADS-box genes is available in pepper. We isolated a MADS-box transcription factor gene from Capsicum annuum, which we named CaMADS. CaMADS expression is induced by low and high temperature, salt, and osmotic stress, and also by abscisic acid (ABA), salicylic acid (SA), methyl-jasmonic acid (MeJA), and CaCl2. To understand the function of CaMADS in the abiotic stress response, we generated pepper plants in which CaMADS expression was down-regulated using VIGS (Virus-induced Gene Silencing), and also transgenic Arabidopsis plants overexpressing CaMADS. We found that CaMADS-down-regulated seedlings were more seriously injured than WT after cold, NaCl, and mannitol treatment, and showed increased electrolyte leakage, malondialdehyde (MDA) levels, and lower chlorophyll content. CaMADS-overexpressing Arabidopsis plants were more tolerant to these stresses than WT, and showed significantly high survival rates and lower H2O2 and super oxide radical contents after cold treatment. CaMADS-overexpressing plants had higher germination rates and percentages of green cotyledons following NaCl and mannitol treatment. Root lengths and fresh weight in CaMADS-overexpressing plants were also significantly longer and higher, respectively, than in WT plants. Taken together, our results suggest that CaMADS functions as a positive stress-responsive transcription factor in the cold, salt, and osmotic stress signaling pathways.


Asunto(s)
Capsicum/efectos de los fármacos , Capsicum/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Capsicum/genética , Frío , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Presión Osmótica/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/fisiología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA