Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 199: 106564, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876323

RESUMEN

Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.

2.
Mol Ther ; 30(2): 868-880, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34371181

RESUMEN

Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.


Asunto(s)
Dinamina II , Miopatías Estructurales Congénitas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Regulación hacia Abajo , Dinamina II/genética , Mamíferos , Ratones , Músculo Esquelético/metabolismo , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Mol Ther ; 29(8): 2514-2534, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33940157

RESUMEN

Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at, and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets, including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting, and enzyme-linked immunosorbent assay (ELISA) assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Miopatías Estructurales Congénitas/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteómica/métodos , Tamoxifeno/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Dinamina II/antagonistas & inhibidores , Humanos , Estudios Longitudinales , Espectrometría de Masas , Ratones , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Análisis de Secuencia de ARN , Proteínas Supresoras de Tumor/antagonistas & inhibidores
4.
Dis Model Mech ; 15(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642830

RESUMEN

Generating reliable preclinical data in animal models of disease is essential in therapy development. Here, we performed statistical analysis and joint longitudinal-survival modeling of the progressive phenotype observed in Mtm1-/y mice, a reliable model for myotubular myopathy. Analysis of historical data was used to generate a model for phenotype progression, which was then confirmed with phenotypic data from a new colony of mice derived via in vitro fertilization in an independent animal house, highlighting the reproducibility of disease phenotype in Mtm1-/y mice. These combined data were used to refine the phenotypic parameters analyzed in these mice and improve the model generated for expected disease progression. The disease progression model was then used to test the therapeutic efficacy of Dnm2 targeting. Dnm2 reduction by antisense oligonucleotides blocked or postponed disease development, and resulted in a significant dose-dependent improvement outside the expected disease progression in untreated Mtm1-/y mice. This provides an example of optimizing disease analysis and testing therapeutic efficacy in a preclinical model, which can be applied by scientists testing therapeutic approaches using neuromuscular disease models in different laboratories. This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Miopatías Estructurales Congénitas , Proteínas Tirosina Fosfatasas no Receptoras , Animales , Progresión de la Enfermedad , Dinamina II/genética , Humanos , Ratones , Músculo Esquelético , Mutación , Miopatías Estructurales Congénitas/genética , Fenotipo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Reproducibilidad de los Resultados
5.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32809972

RESUMEN

Classical dynamins are large GTPases regulating membrane and cytoskeleton dynamics, and they are linked to different pathological conditions ranging from neuromuscular diseases to encephalopathy and cancer. Dominant dynamin 2 (DNM2) mutations lead to either mild adult onset or severe autosomal dominant centronuclear myopathy (ADCNM). Our objectives were to better understand the pathomechanism of severe ADCNM and test a potential therapy. Here, we created the Dnm2SL/+ mouse line harboring the common S619L mutation found in patients with severe ADCNM and impairing the conformational switch regulating dynamin self-assembly and membrane remodeling. The Dnm2SL/+ mouse faithfully reproduces severe ADCNM hallmarks with early impaired muscle function and force, together with myofiber hypotrophy. It revealed swollen mitochondria lacking cristae as the main ultrastructural defect and potential cause of the disease. Patient analysis confirmed this structural hallmark. In addition, DNM2 reduction with antisense oligonucleotides after disease onset efficiently reverted locomotor and force defects after only 3 weeks of treatment. Most histological defects including mitochondria alteration were partially or fully rescued. Overall, this study highlights an efficient approach to revert the severe form of dynamin-related centronuclear myopathy. These data also reveal that the dynamin conformational switch is key for muscle function and should be targeted for future therapeutic developments.


Asunto(s)
Dinamina II/fisiología , Mitocondrias/patología , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/prevención & control , Oligonucleótidos Antisentido/farmacología , Animales , Dinamina II/antagonistas & inhibidores , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/etiología , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología
6.
Mol Ther Methods Clin Dev ; 17: 1178-1189, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32514412

RESUMEN

Myotubular myopathy, also called X-linked centronuclear myopathy (XL-CNM), is a severe congenital disease targeted for therapeutic trials. To date, biomarkers to monitor disease progression and therapy efficacy are lacking. The Mtm1 -/y mouse is a faithful model for XL-CNM, due to myotubularin 1 (MTM1) loss-of-function mutations. Using both an unbiased approach (RNA sequencing [RNA-seq]) and a directed approach (qRT-PCR and protein level), we identified decreased Mstn levels in Mtm1 -/y muscle, leading to low levels of myostatin in muscle and plasma. Myostatin (Mstn or growth differentiation factor 8 [Gdf8]) is a protein released by myocytes and inhibiting muscle growth and differentiation. Decreasing Dnm2 by genetic cross with Dnm2 +/- mice or by antisense oligonucleotides blocked or postponed disease progression and resulted in an increase in circulating myostatin. In addition, plasma myostatin levels inversely correlated with disease severity and with Dnm2 mRNA levels in muscles. Altered Mstn levels were associated with a generalized disruption of the myostatin pathway. Importantly, in two different forms of CNMs we identified reduced circulating myostatin levels in plasma from patients. This provides evidence of a blood-based biomarker that may be used to monitor disease state in XL-CNM mice and patients and supports monitoring circulating myostatin during clinical trials for myotubular myopathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA