Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Glia ; 63(6): 1083-99, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25731696

RESUMEN

The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Tirfostinos/farmacología , Agammaglobulinemia Tirosina Quinasa , Animales , Células Cultivadas , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Hidrólisis , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/fisiología , Factor 88 de Diferenciación Mieloide/metabolismo , Fármacos Neuroprotectores/química , Nitrilos/química , Nitrilos/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Bazo/citología , Bazo/efectos de los fármacos , Bazo/fisiopatología , Células Th17/efectos de los fármacos , Células Th17/patología , Células Th17/fisiología , Tirfostinos/química
2.
Neurobiol Dis ; 48(1): 102-14, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22750529

RESUMEN

Rett syndrome is an X chromosome-linked neurodevelopmental disorder associated with cognitive impairment, motor dysfunction and breathing irregularities causing intermittent hypoxia. Evidence for impaired mitochondrial function is also accumulating. A subunit of complex III is among the potentially dys-regulated genes, the inner mitochondrial membrane is leaking protons, brain ATP levels seem reduced, and Rett patient blood samples confirm increased oxidative damage. We therefore screened for mitochondrial dysfunction and impaired redox balance. In hippocampal slices of a Rett mouse model (Mecp2(-/y)) we detected an increased FAD/NADH baseline-ratio indicating intensified oxidization. Cyanide-induced anoxia caused similar decreases in FAD/NADH ratio and mitochondrial membrane potential in both genotypes, but Mecp2(-/y) mitochondria seemed less polarized. Quantifying cytosolic redox balance with the genetically-encoded optical probe roGFP1 confirmed more oxidized baseline conditions, a more vulnerable redox-balance, and more intense responses of Mecp2(-/y) hippocampus to oxidative challenge and mitochondrial impairment. Trolox treatment improved the redox baseline of Mecp2(-/y) hippocampus and dampened its exaggerated responses to oxidative challenge. Microarray analysis of the hippocampal CA1 subfield did not detect alterations of key mitochondrial enzymes or scavenging systems. Yet, quantitative PCR confirmed a moderate upregulation of superoxide dismutase 1 in Mecp2(-/y) hippocampus, which might be a compensatory response to the increased oxidative burden. Since several receptors and ion-channels are redox-modulated, the mitochondrial and redox changes which already manifest in neonates could contribute to the hyperexcitability and diminished synaptic plasticity in MeCP2 deficiency. Therefore, targeting cellular redox balance might qualify as a potential pharmacotherapeutic approach to improve neuronal network function in Rett syndrome.


Asunto(s)
Hipocampo/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Síndrome de Rett/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Neuronas/metabolismo , Oxidación-Reducción , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología
3.
Front Physiol ; 10: 479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114506

RESUMEN

Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y ) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT.

4.
Front Cell Neurosci ; 10: 266, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895554

RESUMEN

Rett syndrome (RTT) is a severe neurodevelopmental disorder typically arising from spontaneous mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. The almost exclusively female Rett patients show an apparently normal development during their first 6-18 months of life. Subsequently, cognitive- and motor-impairment, hand stereotypies, loss of learned skills, epilepsy and irregular breathing manifest. Early mitochondrial impairment and oxidative challenge are considered to facilitate disease progression. Along this line, we recently confirmed in vitro that acute treatment with the vitamin E-derivative Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, ameliorates cellular redox balance and improves hypoxia tolerance in male MeCP2-deficient (Mecp2-/y ) mouse hippocampus. Pursuing these promising findings, we performed a preclinical study to define the merit of systemic Trolox administration. Blinded, placebo-controlled in vivo treatment of male mice started at postnatal day (PD) 10-11 and continued for ~40 days. Compounds (vehicle only, 10 mg/kg or 40 mg/kg Trolox) were injected intraperitoneally every 48 h. Detailed phenotyping revealed that in Mecp2-/y mice, blood glucose levels, lipid peroxidation, synaptic short-term plasticity, hypoxia tolerance and certain forms of environmental exploration were improved by Trolox. Yet, body weight and size, motor function and the rate and regularity of breathing did not improve. In conclusion, in vivo Trolox treatment partially ameliorated a subset of symptoms of the complex Rett phenotype, thereby confirming a partial merit of the vitamin E-derivative based pharmacotherapy. Yet, it also became evident that frequent animal handling and the route of drug administration are critical issues to be optimized in future trials.

5.
PLoS One ; 4(12): e8202, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-19997594

RESUMEN

BACKGROUND: Dissociating glucocorticoid receptor (GR) ligands hold great promise for treating inflammatory disorders since it is assumed that they exert beneficial activities mediated by transrepression but avoid adverse effects of GR action requiring transactivation. Here we challenged this paradigm by investigating 2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride (CpdA), a dissociating non-steroidal GR ligand, in the context of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODOLOGY/PRINCIPAL FINDINGS: CpdA inhibited pro-inflammatory mediators in myelin-specific T cells and fibroblasts in a GR-dependent manner while gene activation was abolished. However, it also induced massive apoptosis in various cell types even in the absence of the GR by engaging a Bcl-2- and caspase-dependent pathway. (1)H NMR spectroscopy corroborated these findings by revealing that CpdA dissolved in buffered solutions rapidly decomposes into aziridine intermediates known to act as alkylating pro-apoptotic agents. Importantly, the dichotomy of CpdA action also became evident in vivo. Administration of high-dose CpdA to mice was lethal while treatment of EAE with low to intermediate amounts of CpdA dissolved in water significantly ameliorated the disease. The beneficial effect of CpdA required expression of the GR in T cells and was achieved by down regulating LFA-1 and CD44 on peripheral Th cells and by repressing IL-17 production. CONCLUSIONS/SIGNIFICANCE: CpdA has significant therapeutic potential although adverse effects severely compromise its application in vivo. Hence, non-steroidal GR ligands require careful analysis prior to their translation into new therapeutic concepts.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Compuestos de Amonio Cuaternario/efectos adversos , Compuestos de Amonio Cuaternario/uso terapéutico , Receptores de Glucocorticoides/metabolismo , Acetatos , Animales , Apoptosis/efectos de los fármacos , Aziridinas/farmacología , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos/citología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Cobayas , Interleucina-17/biosíntesis , Ligandos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Especificidad de Órganos/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Solventes , Sinefrina/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Activación Transcripcional/efectos de los fármacos , Tiramina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA