Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mol Model ; 25(9): 282, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31468178

RESUMEN

In this paper, simulated biaxial creep deformation behaviour for nanocrystalline (NC) nickel (Ni) has been performed at various applied load (i.e. 1 GPa, 1.4 GPa, 2 GPa, 2.5 GPa and 3 GPa) for a particular temperature (i.e. 1210 K) using molecular dynamics (MD) simulation to investigate underlying deformation mechanism based on the structural evolution during biaxial creep process. Primary, secondary and tertiary stages of creep are observed to be exhibited significantly only at 3 GPa applied stress. While, only primary and secondary stages of creep are exhibited at 1 GPa applied stress. Atomic structural evaluation, dislocation density, shear strains, atomic trajectory, inverse pole figures and grain orientation with texture distribution have been carried out to evaluate structural evolution. Stress exponent (m) for NC Ni is analysed for a particular creep temperature (i.e. 1210 K) and obtained m value is 1.30. According to shear strains counter plot, accumulation of higher shear strains are observed at grain boundary (GB) during biaxial creep deformation. It is found that dislocation density during biaxial creep is increased with the progress of creep process. Grain rotation and texture evaluation during biaxial creep process are studied using grain tracking algorithm (GTA). Grain rotation in ultrafine-grained NC Ni specimen during biaxial creep deformation is happened and exhibits almost distinct distribution, which is occurred due to the atomic shuffling within the GBs. Grain growth of ultrafine grained NC Ni is observed during biaxial creep deformation which is caused by mechanical stress.

2.
J Mol Model ; 24(7): 167, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29923066

RESUMEN

A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al2O3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al2O3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al2O3 thin film coated Al specimen. The displacement of oxygen atoms from Al2O3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.

3.
J Mol Model ; 23(11): 309, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29018998

RESUMEN

In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of <0, 2, 8, 5>, <0, 2, 8, 2 >, and <0, 1, 10, 2 > distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA