Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(20): e2308680, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225709

RESUMEN

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Asunto(s)
Eje Cerebro-Intestino , Diabetes Mellitus Tipo 2 , Exosomas , Ajo , Microbioma Gastrointestinal , Nanopartículas , Diabetes Mellitus Tipo 2/metabolismo , Ajo/química , Animales , Nanopartículas/química , Exosomas/metabolismo , Ratones , Akkermansia , Humanos , Masculino , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/patología
2.
EMBO Rep ; 23(3): e53365, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994476

RESUMEN

Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.


Asunto(s)
Colitis , Exosomas , Morus , Nanopartículas , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/prevención & control , Modelos Animales de Enfermedad , Exosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Corteza de la Planta/metabolismo
3.
Mol Ther ; 30(4): 1523-1535, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35077861

RESUMEN

Aberrant protein glycosylation is a hallmark of cancer, but few drugs targeting cancer glycobiomarkers are currently available. Here, we showed that a lectibody consisting of the high-mannose glycan-binding lectin Avaren and human immunoglobulin G1 (IgG1) Fc (AvFc) selectively recognizes a range of cell lines derived from lung, breast, colon, and blood cancers at nanomolar concentrations. Binding of AvFc to the non-small cell lung cancer (NSCLC) cell lines A549 and H460 was characterized in detail. Co-immunoprecipitation proteomics analysis revealed that epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) are among the lectibody's common targets in these cells. AvFc blocked the activation of EGFR and IGF1R by their respective ligands in A549 cells and inhibited the migration of A549 and H460 cells upon stimulation with EGF and IGF1. Furthermore, AvFc induced potent Fc-mediated cytotoxic effects and significantly restricted A549 and H460 tumor growth in severe combined immunodeficiency (SCID) mice. Immunohistochemistry analysis of primary lung tissues from NSCLC patients demonstrated that AvFc preferentially binds to tumors over adjacent non-tumor tissues. Our findings provide evidence that increased abundance of high-mannose glycans in the glycocalyx of cancer cells can be a druggable target, and AvFc may provide a new tool to probe and target this tumor-associated glycobiomarker.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patología , Manosa , Ratones , Polisacáridos/farmacología
4.
Small ; 18(6): e2105385, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34897972

RESUMEN

Microglia modulate pro-inflammatory and neurotoxic activities. Edible plant-derived factors improve brain function. Current knowledge of the molecular interactions between edible plant-derived factors and the microglial cell is limited. Here an alcohol-induced chronic brain inflammation model is used to identify that the microglial cell is the novel target of oat nanoparticles (oatN). Oral administration of oatN inhibits brain inflammation and improves brain memory function of mice that are fed alcohol. Mechanistically, ethanol activates dectin-1 mediated inflammatory pathway. OatN is taken up by microglial cells via ß-glucan mediated binding to microglial hippocalcin (HPCA) whereas oatN digalactosyldiacylglycerol (DGDG) prevents assess of oatN ß-glucan to dectin-1. Subsequently endocytosed ß-glucan/HPCA is recruited in an endosomal recycling compartment (ERC) via interaction with Rab11a. This complex then sequesters the dectin-1 in the ERC in an oatN ß-glucan dependent manner and alters the location of dectin-1 from Golgi to early endosomes and lysosomes and increases exportation of dectin-1 into exosomes in an Rab11a dependent manner. Collectively, these cascading actions lead to preventing the activation of the alcoholic induced brain inflammation signing pathway(s). This coordinated assembling of the HPCA/Rab11a/dectin-1 complex by oral administration of oatN may contribute to the prevention of brain inflammation.


Asunto(s)
Exosomas , Lectinas Tipo C , Memoria , Microglía , Nanopartículas , Animales , Avena , Encéfalo , Etanol/administración & dosificación , Lectinas Tipo C/metabolismo , Memoria/fisiología , Ratones , Microglía/metabolismo
5.
Pediatr Nephrol ; 37(10): 2255-2265, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35220505

RESUMEN

Chronic kidney disease (CKD) can progress to kidney failure and require dialysis or transplantation, while early diagnosis can alter the course of disease and lead to better outcomes in both pediatric and adult patients. Significant CKD comorbidities include the manifestation of cardiovascular disease, heart failure, coronary disease, and hypertension. The pathogenesis of chronic kidney diseases can present as subtle and especially difficult to distinguish between different glomerular pathologies. Early detection of adult and pediatric CKD and detailed mechanistic understanding of the kidney damage can be helpful in delaying or curtailing disease progression via precise intervention toward diagnosis and prognosis. Clinically, serum creatinine and albumin levels can be indicative of CKD, but often are a lagging indicator only significantly affected once kidney function has severely diminished. The evolution of proteomics and mass spectrometry technologies has begun to provide a powerful research tool in defining these mechanisms and identifying novel biomarkers of CKD. Many of the same challenges and advances in proteomics apply to adult and pediatric patient populations. Additionally, proteomic analysis of adult CKD patients can be transferred directly toward advancing our knowledge of pediatric CKD as well. In this review, we highlight applications of proteomics that have yielded such biomarkers as PLA2R, SEMA3B, and other markers of membranous nephropathy as well as KIM-1, MCP-1, and NGAL in lupus nephritis among other potential diagnostic and prognostic markers. The potential for improving the clinical toolkit toward better treatment of pediatric kidney diseases is significantly aided by current and future development of proteomic applications.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Adulto , Biomarcadores , Niño , Tasa de Filtración Glomerular , Humanos , Enfermedades Renales/diagnóstico , Proteómica , Diálisis Renal
6.
Mol Ther ; 29(8): 2424-2440, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33984520

RESUMEN

Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.


Asunto(s)
COVID-19/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Plantas/metabolismo , Neumonía/metabolismo , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , SARS-CoV-2/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo , Células U937 , Células Vero
7.
J Am Soc Nephrol ; 31(8): 1883-1904, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32561683

RESUMEN

BACKGROUND: The mechanisms leading to extracellular matrix (ECM) replacement of areas of glomerular capillaries in histologic variants of FSGS are unknown. This study used proteomics to test the hypothesis that glomerular ECM composition in collapsing FSGS (cFSGS) differs from that of other variants. METHODS: ECM proteins in glomeruli from biopsy specimens of patients with FSGS not otherwise specified (FSGS-NOS) or cFSGS and from normal controls were distinguished and quantified using mass spectrometry, verified and localized using immunohistochemistry (IHC) and confocal microscopy, and assessed for gene expression. The analysis also quantified urinary excretion of ECM proteins and peptides. RESULTS: Of 58 ECM proteins that differed in abundance between cFSGS and FSGS-NOS, 41 were more abundant in cFSGS and 17 in FSGS-NOS. IHC showed that glomerular tuft staining for cathepsin B, cathepsin C, and annexin A3 in cFSGS was significantly greater than in other FSGS variants, in minimal change disease, or in membranous nephropathy. Annexin A3 colocalized with cathepsin B and C, claudin-1, phosphorylated ERK1/2, and CD44, but not with synaptopodin, in parietal epithelial cells (PECs) infiltrating cFSGS glomeruli. Transcripts for cathepsins B and C were increased in FSGS glomeruli compared with normal controls, and urinary excretion of both cathepsins was significantly greater in cFSGS compared with FSGS-NOS. Urinary excretion of ECM-derived peptides was enhanced in cFSGS, although in silico analysis did not identify enhanced excretion of peptides derived from cathepsin B or C. CONCLUSIONS: ECM differences suggest that glomerular sclerosis in cFSGS differs from that in other FSGS variants. Infiltration of activated PECs may disrupt ECM remodeling in cFSGS. These cells and their cathepsins may be therapeutic targets.


Asunto(s)
Proteínas de la Matriz Extracelular/análisis , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomérulos Renales/metabolismo , Proteómica/métodos , Catepsinas/fisiología , Células Epiteliales/fisiología , Humanos , Inmunohistoquímica , Glomérulos Renales/química , Microscopía Confocal
8.
Chem Res Toxicol ; 33(6): 1403-1417, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32274925

RESUMEN

Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 µM, 0-72 h; or 0-5 µM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.


Asunto(s)
Arsenitos/toxicidad , Contaminantes Ambientales/toxicidad , Proteínas de Unión al ARN/metabolismo , Zinc/metabolismo , Empalme Alternativo/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Proteínas de Unión al ARN/genética
9.
Med Chem Res ; 29: 1247-1263, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32831531

RESUMEN

Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with metabolic disruption and non-alcoholic fatty liver disease (NAFLD). Based on their ability to activate the aryl hydrocarbon receptor (AhR), PCBs are subdivided into two classes: dioxin-like (DL) and non-dioxin-like (NDL) PCBs. Previously, we demonstrated that NDL PCBs compromised the liver to promote more severe diet-induced NAFLD. Here, the hepatic effects and potential mechanisms (by untargeted liver proteomics) of DL PCBs, NDL PCBs or co-exposure to both in diet-induced NAFLD are investigated. Male C57Bl/6 mice were fed a 42% fat diet and exposed to vehicle control; Aroclor1260 (20 mg/kg, NDL PCB mixture); PCB126 (20 µg/kg, DL PCB congener); or a mixture of Aroclor1260 (20 mg/kg)+PCB126 (20 µg/kg) for 12 weeks. Each exposure was associated with a distinct hepatic proteome. Phenotypic and proteomic analyses revealed increased hepatic inflammation and phosphoprotein signaling disruption by Aroclor1260. PCB126 decreased hepatic inflammation and fibrosis at the molecular level; while altering cytoskeletal remodeling, metal homeostasis, and intermediary/xenobiotic metabolism. PCB126 attenuated Aroclor1260-induced hepatic inflammation but increased hepatic free fatty acids in the co-exposure group. Aroclor1260+PCB126 exposure was strongly associated with multiple epigenetic processes, and these could potentially explain the observed non-additive effects of the exposures on the hepatic proteome. Taken together, the results demonstrated that PCB exposures differentially regulated the hepatic proteome and the histologic severity of diet-induced NAFLD. Future research is warranted to determine the AhR-dependence of the observed effects including metal homeostasis and the epigenetic regulation of gene expression.

10.
J Proteome Res ; 18(4): 1582-1594, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30807179

RESUMEN

Environmental pollution contributes to fatty liver disease pathogenesis. Polychlorinated biphenyl (PCB) exposures have been associated with liver enzyme elevation and suspected steatohepatitis in cohort studies. Male mice treated with the commercial PCB mixture, Aroclor 1260 (20 mg/kg), and fed high fat diet (HFD) for 12 weeks developed steatohepatitis. Receptor-based modes of action including inhibition of the epidermal growth factor (EGF) receptor were previously proposed, but other mechanisms likely exist. Objectives were to identify and validate the pathways, transcription factors, and mechanisms responsible for the steatohepatitis associated with PCB and HFD coexposures. Comparative proteomics analysis was performed in archived mouse liver samples from the aforementioned chronic exposure study. Pathway and transcription factor analysis (TFA) was performed, and selected results were validated. Liver proteomics detected 1103 unique proteins. Aroclor 1260 upregulated 154 and downregulated 93 of these. Aroclor 1260 + HFD coexposures affected 55 pathways including glutathione metabolism, intermediary metabolism, and cytoskeletal remodeling. TFA of Aroclor 1260 treatment demonstrated alterations in the function of 42 transcription factors including downregulation of NRF2 and key nuclear receptors previously demonstrated to protect against steatohepatitis (e.g., HNF4α, FXR, PPARα/δ/γ, etc.). Validation studies demonstrated that Aroclor 1260 significantly reduced HNF4α protein levels, while Aroclor 1260 + HFD reduced expression of the HNF4α target gene, albumin, in vivo. Aroclor 1260 attenuated EGF-dependent HNF4α phosphorylation and target gene activation in vitro. Aroclor 1260 reduced levels of NRF2, its target genes, and glutathione in vivo. Aroclor 1260 attenuated EGF-dependent NRF2 upregulation, in vitro. Aroclor 1260 indirectly activated hepatic stellate cells in vitro via induction of hepatocyte-derived TGFß. PCB exposures adversely impacted transcription factors regulating liver protection, function, and fibrosis. PCBs, thus, compromised the liver by reducing its protective responses against nutritional stress to promote diet-induced steatohepatitis. The identified mechanisms by which environmental pollutants influence fatty liver disease pathogenesis require confirmation in humans.


Asunto(s)
Dieta Alta en Grasa , Hígado , Enfermedad del Hígado Graso no Alcohólico , Bifenilos Policlorados/toxicidad , Proteoma , Animales , Línea Celular , Hígado/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteoma/análisis , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteómica
11.
J Biol Chem ; 293(16): 5895-5908, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29523688

RESUMEN

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is an integral component of proliferative signaling. EGFRs on the cell surface become activated upon EGF binding and have an increased rate of endocytosis. Once in the cytoplasm, the EGF·EGFR complex is trafficked to the lysosome for degradation, and signaling is terminated. During trafficking, the EGFR kinase domain remains active, and the internalized EGFR can continue signaling to downstream effectors. Although effector activity varies based on the EGFR's endocytic location, it is not clear how this occurs. In an effort to identify proteins that uniquely associate with the internalized, liganded EGFR in the early endosome, we developed an early endosome isolation strategy to analyze their protein composition. Post-nuclear supernatant from HeLa cells stimulated with and without EGF were separated on an isotonic 17% Percoll gradient. The gradient was fractionated, and early endosomal fractions were pooled and immunoisolated with an EEA1 mAb. The isolated endosomes were validated by immunoblot using antibodies against organelle-specific marker proteins and transmission EM. These early endosomes were also subjected to LC-MS/MS for proteomic analysis. Five proteins were detected in endosomes in a ligand-dependent manner: EGFR, RUFY1, STOML2, PTPN23, and CCDC51. Knockdown of RUFY1 or PTPN23 by RNAi indicated that both proteins play a role in EGFR trafficking. These experiments indicate that endocytic trafficking of activated EGFR changes the protein composition, membrane trafficking, and signaling potential of the early endosome.


Asunto(s)
Endosomas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Endocitosis , Receptores ErbB/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Proteómica , Transducción de Señal
12.
J Mol Cell Cardiol ; 118: 183-192, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29627295

RESUMEN

Pathological cardiac hypertrophy is associated with the accumulation of lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and acrolein in the heart. These aldehydes are metabolized via several pathways, of which aldose reductase (AR) represents a broad-specificity route for their elimination. We tested the hypothesis that by preventing aldehyde removal, AR deficiency accentuates the pathological effects of transverse aortic constriction (TAC). We found that the levels of AR in the heart were increased in mice subjected to TAC for 2 weeks. In comparison with wild-type (WT), AR-null mice showed lower ejection fraction, which was exacerbated 2 weeks after TAC. Levels of atrial natriuretic peptide and myosin heavy chain were higher in AR-null than in WT TAC hearts. Deficiency of AR decreased urinary levels of the acrolein metabolite, 3-hydroxypropylmercapturic acid. Deletion of AR did not affect the levels of the other aldehyde-metabolizing enzyme - aldehyde dehydrogenase 2 in the heart, or its urinary product - (N-Acetyl-S-(2-carboxyethyl)-l-cystiene). AR-null hearts subjected to TAC showed increased accumulation of HNE- and acrolein-modified proteins, as well as increased AMPK phosphorylation and autophagy. Superfusion with HNE led to a greater increase in p62, LC3II formation, and GFP-LC3-II punctae formation in AR-null than WT cardiac myocytes. Pharmacological inactivation of JNK decreased HNE-induced autophagy in AR-null cardiac myocytes. Collectively, these results suggest that during hypertrophy the accumulation of lipid peroxidation derived aldehydes promotes pathological remodeling via excessive autophagy, and that metabolic detoxification of these aldehydes by AR may be essential for maintaining cardiac function during early stages of pressure overload.


Asunto(s)
Aldehído Reductasa/deficiencia , Autofagia , Corazón/fisiopatología , Presión , Aldehído Reductasa/metabolismo , Aldehídos/metabolismo , Animales , Aorta/patología , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Constricción Patológica , Eliminación de Gen , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocardio/enzimología , Proteína Sequestosoma-1/metabolismo
13.
Am J Physiol Renal Physiol ; 315(5): F1484-F1492, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30132343

RESUMEN

We examined the association of urine inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPP2K) with the presence and progression of diabetic kidney disease (DKD) lesions. Urine IPP2K was measured at baseline by quantitative liquid chromatography-mass spectrometry in 215 participants from the Renin-Angiotensin System Study who had type 1 diabetes and were normoalbuminuric and normotensive with normal or increased glomerular filtration rate (GFR). Urine IPP2K was detectable in 166 participants. Participants with IPP2K below the limit of quantification (LOQ) were assigned concentrations of LOQ/√2. All concentrations were then standardized to urine creatinine (Cr) concentration. Kidney morphometric data were available from biopsies at baseline and after 5 yr. Relationships of IPP2K/Cr with morphometric variables were assessed by linear regression after adjustment for age, sex, diabetes duration, hemoglobin A1c, mean arterial pressure, treatment assignment, and, for longitudinal analyses, baseline structure. Baseline mean age was 29.7 yr, mean diabetes duration 11.2 yr, median albumin excretion rate 5.0 µg/min, and mean iohexol GFR 129 ml·min-1·1.73m-2. Higher IPP2K/Cr was associated with higher baseline peripheral glomerular total filtration surface density [Sv(PGBM/glom), tertile 3 vs. tertile 1 ß = 0.527, P = 0.011] and with greater preservation of Sv(PGBM/glom) after 5 yr ( tertile 3 vs. tertile 1 ß = 0.317, P = 0.013). Smaller increases in mesangial fractional volume ( tertile 3 vs. tertile 1 ß = -0.578, P = 0.018) were observed after 5 yr in men with higher urine IPP2K/Cr concentrations. Higher urine IPP2K/Cr is associated with less severe kidney lesions at baseline and with preservation of kidney structure over 5 yr in individuals with type 1 diabetes and no clinical evidence of DKD at baseline.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/orina , Riñón/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/orina , Adulto , Biomarcadores/orina , Biopsia , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Ensayos Clínicos como Asunto , Diabetes Mellitus Tipo 1/diagnóstico , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Espectrometría de Masas , Estudios Multicéntricos como Asunto , Factores de Tiempo , Regulación hacia Arriba , Adulto Joven
14.
Hepatology ; 65(3): 969-982, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28035785

RESUMEN

The extracellular matrix (ECM) consists of diverse components that work bidirectionally with surrounding cells to create a responsive microenvironment. In some contexts (e.g., hepatic fibrosis), changes to the ECM are well recognized and understood. However, it is becoming increasingly accepted that the hepatic ECM proteome (i.e., matrisome) responds dynamically to stress well before fibrosis. The term "transitional tissue remodeling" describes qualitative and quantitative ECM changes in response to injury that do not alter the overall architecture of the organ; these changes in ECM may contribute to early disease initiation and/or progression. The nature and magnitude of these changes to the ECM in liver injury are poorly understood. The goals of this work were to validate analysis of the ECM proteome and compare the impact of 6 weeks of ethanol diet and/or acute lipopolysaccharide (LPS). Liver sections were processed in a series of increasingly rigorous extraction buffers to separate proteins by solubility. Extracted proteins were identified using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Both ethanol and LPS dramatically increased the number of matrisome proteins ∼25%. The enhancement of LPS-induced liver damage by ethanol preexposure was associated with unique protein changes. CONCLUSION: An extraction method to enrich the hepatic ECM was characterized. The results demonstrate that the hepatic matrisome responds dynamically to both acute (LPS) and chronic (ethanol) stresses, long before more-dramatic fibrotic changes to the liver occur. The changes to the mastrisome may contribute, at least in part, to the pathological responses to these stresses. It is also interesting that several ECM proteins responded similarly to both stresses, suggesting a common mechanism in both models. Nevertheless, there were responses that were unique to the individual and combined exposures. (Hepatology 2017;65:969-982).


Asunto(s)
Etanol/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Lipopolisacáridos/farmacología , Cirrosis Hepática/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/efectos de los fármacos , Cirrosis Hepática/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Proteoma/genética , Distribución Aleatoria , Factores de Riesgo , Sensibilidad y Especificidad
15.
BMC Nephrol ; 19(1): 102, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720115

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a common post-cardiac surgery complication and influences patient morbidity and prognosis. This study was designed to identify preoperative candidate urine biomarkers in patients undergoing cardiac surgery. METHODS: A prospective cohort study of adults undergoing cardiac surgery at increased risk for AKI at a single hospital between July 2010 and September 2012 was performed. The primary outcome was the development of AKI, defined as an absolute serum creatinine (SCr) level increase ≥ 0.5 mg/dL or a ≥ 50% relative increase within 72 h of surgery. A secondary outcome was development of AKI defined by Kidney Disease Improving Global Outcomes (KDIGO). Urine collected by voiding within 4 h prior to surgery was used for proteomic analysis and confirmatory enzyme linked immunosorbent assays (ELISAs) studies. Biomarkers were tested for AKI-prediction using Cox and Snell R2, area under the receiver operating curve (AUROC), and percent of corrected classifications. To evaluate the added effect of each candidate biomarker on AKI discrimination, receiver operator characteristic (ROC) curves, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were calculated. RESULTS: Forty-seven of 755 patients met screening criteria including 15 with AKI. Proteomic analysis identified 29 proteins with a significant ≥2-fold change. Confirmatory ELISA measurements of five candidate markers showed urinary complement factor B (CFB) and histidine rich glycoprotein (HRG) concentrations were significantly increased in patients with AKI. By multivariate analysis, NRI, and IDI the addition of CFB and HRG to the standard clinical assessment significantly improved risk prediction for the primary outcome. Only HRG was a significant predictor in the 21 patients with AKI defined by KDIGO criteria. CONCLUSIONS: Pre-operative urine measurement of CFB or HRG significantly enhanced the current post-surgery AKI risk stratification for more restrictive definition of AKI. HRG, but not CFB or clinical risk stratification, predicted AKI defined by KDIGO. The ability of these biomarkers to predict risk for dialysis-requiring AKI or death could not be reliably assessed in our study due to a small number of patients with either outcome.


Asunto(s)
Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/orina , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/orina , Lesión Renal Aguda/epidemiología , Anciano , Biomarcadores/orina , Procedimientos Quirúrgicos Cardíacos/tendencias , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Valor Predictivo de las Pruebas , Estudios Prospectivos , Factores de Riesgo
16.
Am J Physiol Cell Physiol ; 313(2): C197-C206, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515088

RESUMEN

Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K+ transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.


Asunto(s)
Hipertensión/genética , Túbulos Renales Proximales/metabolismo , Fosfoproteínas/biosíntesis , Intercambiadores de Sodio-Hidrógeno/biosíntesis , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Animales , Presión Sanguínea/genética , Línea Celular , Modelos Animales de Enfermedad , Dopamina/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Hipertensión/metabolismo , Hipertensión/patología , Riñón/metabolismo , Riñón/patología , Túbulos Renales Proximales/patología , Masculino , Fosfoproteínas/genética , Ratas , Ratas Endogámicas SHR , Transducción de Señal/genética , Intercambiadores de Sodio-Hidrógeno/genética , ATPasa Intercambiadora de Sodio-Potasio/genética
17.
Kidney Int ; 91(2): 501-511, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27988214

RESUMEN

Abnormal extracellular matrix (ECM) remodeling is a prominent feature of many glomerular diseases and is a final common pathway of glomerular injury. However, changes in ECM composition accompanying disease-related remodeling are unknown. The physical properties of ECM create challenges for characterization of composition using standard protein extraction techniques, as the insoluble components of ECM are frequently discarded and many ECM proteins are in low abundance compared to other cell proteins. Prior proteomic studies defining normal ECM composition used a large number of glomeruli isolated from human kidneys retrieved for transplantation or by nephrectomy for cancer. Here we examined the ability to identify ECM proteins by mass spectrometry using glomerular sections compatible with those available from standard renal biopsy specimens. Proteins were classified as ECM by comparison to the Matrisome database and previously identified glomerular ECM proteins. Optimal ECM protein identification resulted from sequential decellularization and protein extraction of 100 human glomerular sections isolated by laser capture microdissection from either frozen or formalin-fixed, paraffin-embedded tissue. In total, 147 ECM proteins were identified, including the majority of structural and GBM proteins previously identified along with a number of matrix and glomerular basement membrane proteins not previously associated with glomeruli. Thus, our study demonstrates the feasibility of proteomic analysis of glomerular ECM from retrieved glomerular sections isolated from renal biopsy tissue and expands the list of known ECM proteins in glomeruli.


Asunto(s)
Proteínas de la Matriz Extracelular/análisis , Matriz Extracelular/química , Membrana Basal Glomerular/química , Enfermedades Renales/metabolismo , Captura por Microdisección con Láser , Proteómica/métodos , Biomarcadores/análisis , Biopsia , Bases de Datos de Proteínas , Matriz Extracelular/patología , Estudios de Factibilidad , Fijadores , Formaldehído , Secciones por Congelación , Membrana Basal Glomerular/patología , Humanos , Enfermedades Renales/diagnóstico , Espectrometría de Masas , Adhesión en Parafina , Valor Predictivo de las Pruebas , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Fijación del Tejido/métodos
18.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 186-194, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27816562

RESUMEN

BACKGROUND: A targeted analysis of the 50kDa C-terminal fragment of insulin-response element binding protein-1 (IRE-BP1) activation of target genes through the insulin receptor substrate receptor/PI-3 kinase/Akt pathway has been demonstrated for the insulin growth factor-1 receptor. The broader effects of 50kDa C-terminal IRE-BP1 fragment over-expression on protein abundance in pancreatic islet beta cells have not been determined. RESULTS: Liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses of replicate lysates of pancreatic islets isolated from background strain animals and transgenic animals, overexpressing IRE-BP1 in pancreatic islet beta cells, demonstrated statistically significant increases in the expression of proteins involved in protein synthesis, endoplasmic reticulum (ER) stress and scaffolding proteins important for protein kinase C signaling; some of which were confirmed by immunoblot analyses. Bioinformatic analysis of protein expression network patterns suggested IRE-BP1 over-expression leads to protein expression patterns indicative of activation of functional protein networks utilized for protein post-translational modification, protein folding, and protein synthesis. Co-immunoprecipitation experiments demonstrate a novel interaction between two differentially regulated proteins receptor for activated protein kinase C (RACK1) and translationally controlled tumor protein (TCTP). CONCLUSIONS: Proteomic analysis of IRE-BP1 over-expression in pancreatic islet beta cells suggest IRE-BP1 (a) directly or indirectly through establishing hyperglycemia results in increased expression of ribosomal proteins and markers of ER stress and (b) leads to the enhanced and previously un-described interaction of RACK1 and TCTP. SIGNIFICANCE: This study identified C-terminal 50kDa domain of IRE-BP1 over-expression results in increased markers of ER-stress and a novel interaction between the scaffolding proteins RACK1 and TCTP.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Biomarcadores/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Islotes Pancreáticos/metabolismo , Neuropéptidos/metabolismo , Animales , Estrés del Retículo Endoplásmico/fisiología , Hiperglucemia , Insulina/metabolismo , Ratones , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteómica/métodos , Receptores de Cinasa C Activada , Elementos de Respuesta/fisiología , Proteína Tumoral Controlada Traslacionalmente 1
19.
Am J Physiol Cell Physiol ; 310(3): C205-15, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26834145

RESUMEN

Parathyroid hormone (PTH) is a key regulator of the expression and function of the type IIa sodium-phosphate cotransporter (Npt2a), the protein responsible for regulated renal phosphate reabsorption. We previously showed that PTH induces rapid decay of Npt2a mRNA through posttranscriptional mechanisms. We hypothesized that PTH-induced changes in RNA-binding protein (RBP) activity mediate the degradation of Npt2a mRNA. To address this aim, we treated opossum kidney (OK) cells, a PTH-sensitive proximal tubule cell culture model, with 100 nM PTH for 30 min and 2 h, followed by mass spectrometry characterization of the PTH-stimulated phosphoproteome. We identified 1,182 proteins differentially phosphorylated in response to PTH, including 68 RBPs. Preliminary analysis identified a phospho-RBP, hnRNPK-homology-type-splicing regulatory protein (KSRP), with predicted binding sites for the 3'-untranslated region (UTR) of Npt2a mRNA. Western blot analysis confirmed expression of KSRP in OK cells and showed PTH-dependent translocation to the nucleus. Immunoprecipitation of KSRP from control and PTH-treated cells followed by RNA isolation and RT-quantitative PCR analysis identified Npt2a mRNA from both control and PTH-treated KSRP pulldowns. Knockdown of KSRP followed by PTH treatment showed that KSRP is required for mediating PTH-stimulated reduction in sodium/hydrogen exchanger 3 mRNA, but not Npt2a mRNA. We conclude that 1) PTH is a major regulator of both transcription and translation, and 2) KSRP binds Npt2a mRNA but its role in PTH regulation of Npt2a mRNA is not clear.


Asunto(s)
Túbulos Renales Proximales/efectos de los fármacos , Hormona Paratiroidea/farmacología , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Regiones no Traducidas 3' , Animales , Sitios de Unión , Línea Celular , Biología Computacional , Bases de Datos Genéticas , Túbulos Renales Proximales/metabolismo , Espectrometría de Masas , Zarigüeyas , Fosforilación , Unión Proteica , Proteómica/métodos , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Transfección
20.
Proteomics ; 15(21): 3722-30, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26304790

RESUMEN

Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic membranous nephropathy (iMN), idiopathic focal segmental glomerulosclerosis (iFSGS), and normal controls using an approach that combined both proteomics and pathology analysis. Lysosome membrane protein-2 (LIMP-2) was increased greater than twofold in urinary microvesicles obtained from patients with iMN compared to microvesicles of patients with iFSGS and normal controls. Immunofluorescence analysis of renal biopsies confirmed our proteomics findings that LIMP-2 was upregulated in glomeruli from patients with iMN but not in glomeruli of diseased patients (iFSGS, minimal change nephropathy, IgA nephropathy, membranoproliferative glomerulonephritis) and normal controls. Confocal laser microscopy showed co-localization of LIMP-2 with IgG along the glomerular basement membrane. Serum antibodies against LIMP-2 could not be detected. In conclusion, our data show the value of urinary microvesicles in biomarker discovery and provide evidence for de novo expression of LIMP-2 in glomeruli of patients with iMN.


Asunto(s)
Glomerulonefritis Membranosa/orina , Glomeruloesclerosis Focal y Segmentaria/orina , Glomérulos Renales/patología , Proteínas de Membrana de los Lisosomas/análisis , Proteínas de Membrana de los Lisosomas/orina , Receptores Depuradores/análisis , Glomerulonefritis Membranosa/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA