Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Rev ; 98(3): 1591-1625, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29848236

RESUMEN

Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.


Asunto(s)
Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Cardiovasculares/metabolismo , Humanos , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Agonistas del Receptor Purinérgico P1 , Antagonistas de Receptores Purinérgicos P1 , Receptores Purinérgicos P1/química , Transducción de Señal
2.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361780

RESUMEN

There is a huge need for novel therapeutic and preventative approaches to Alzheimer's disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness's later phases. This may be caused by a number of reasons, e.g., a protracted exposure to cytokines that induce inflammation and an inappropriate accumulation of amyloid beta (Aß) peptide. Extracellular amyloid and/or intraneuronal phosphorylated tau in AD can both activate microglia. The activation of TLRs and scavenger receptors, inducing the activation of numerous inflammatory pathways, including the NF-kB, JAK-STAT, and NLRP3 inflammasome, facilitates microglial phagocytosis and activation in response to these mediators. Aß/tau are taken up by microglia, and their removal from the extracellular space can also have protective effects, but if the illness worsens, an environment that is constantly inflamed and overexposed to an oxidative environment might encourage continuous microglial activation, which can lead to neuroinflammation, oxidative stress, iron overload, and neurotoxicity. The complexity and diversity of the roles that microglia play in health and disease necessitate the urgent development of new biomarkers that identify the activity of different microglia. It is imperative to comprehend the intricate mechanisms that result in microglial impairment to develop new immunomodulating therapies that primarily attempt to recover the physiological role of microglia, allowing them to carry out their core function of brain protection.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Inflamasomas/metabolismo , Citocinas/metabolismo
3.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563447

RESUMEN

The A2A adenosine receptor, a member of the P1 purinergic receptor family, plays a crucial role in the pathophysiology of different neurodegenerative illnesses, including Alzheimer's disease (AD). It regulates both neurons and glial cells, thus modulating synaptic transmission and neuroinflammation. AD is a complex, progressive neurological condition that is the leading cause of dementia in the world's old population (>65 years of age). Amyloid peptide-ß extracellular accumulation and neurofibrillary tangles constitute the principal etiologic tracts, resulting in apoptosis, brain shrinkage, and neuroinflammation. Interestingly, a growing body of evidence suggests a role of NLRP3 inflammasome as a target to treat neurodegenerative diseases. It represents a tripartite multiprotein complex including NLRP3, ASC, and procaspase-1. Its activation requires two steps that lead with IL-1ß and IL-18 release through caspase-1 activation. NLRP3 inhibition provides neuroprotection, and in recent years adenosine, through the A2A receptor, has been reported to modulate NLRP3 functions to reduce organ damage. In this review, we describe the role of NLRP3 in AD pathogenesis, both alone and in connection to A2A receptor regulation, in order to highlight a novel approach to address treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Inflamasomas , Receptores de Adenosina A2 , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Adenosina A2/metabolismo , Receptores de Adenosina A2/uso terapéutico
4.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805955

RESUMEN

Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer's disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Ajo , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Disulfuros , Ajo/química , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacología , Ácidos Sulfínicos/uso terapéutico
5.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163142

RESUMEN

Adenosine exerts an important role in the modulation of central nervous system (CNS) activity. Through the interaction with four G-protein coupled receptor (GPCR) subtypes, adenosine subtly regulates neurotransmission, interfering with the dopaminergic, glutamatergic, noradrenergic, serotoninergic, and endocannabinoid systems. The inhibitory and facilitating actions of adenosine on neurotransmission are mainly mediated by A1 and A2A adenosine receptors (ARs), respectively. Given their role in the CNS, ARs are promising therapeutic targets for neuropsychiatric disorders where altered neurotransmission represents the most likely etiological hypothesis. Activating or blocking ARs with specific pharmacological agents could therefore restore the balance of altered neurotransmitter systems, providing the rationale for the potential treatment of these highly debilitating conditions. In this review, we summarize and discuss the most relevant studies concerning AR modulation in psychotic and mood disorders such as schizophrenia, bipolar disorders, depression, and anxiety, as well as neurodevelopment disorders such as autism spectrum disorder (ASD), fragile X syndrome (FXS), attention-deficit hyperactivity disorder (ADHD), and neuropsychiatric aspects of neurodegenerative disorders.


Asunto(s)
Adenosina/uso terapéutico , Trastornos Mentales/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Animales , Humanos , Trastornos Mentales/metabolismo , Trastornos Mentales/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología
6.
Molecules ; 27(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566035

RESUMEN

The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer's disease (AD). This ailment is considered the main form of dementia and is expected to exponentially increase in coming years. The pathological tracts of AD include amyloid peptide-ß extracellular accumulation and tau hyperphosphorylation, causing neuronal cell death, cognitive deficit, and memory loss. Interestingly, in vitro and in vivo studies have demonstrated that A2A adenosine receptor antagonists may counteract each of these clinical signs, representing an important new strategy to fight a disease for which unfortunately only symptomatic drugs are available. This review offers a brief overview of the biological effects mediated by A2A adenosine receptors in AD animal and human studies and reports the state of the art of A2A adenosine receptor antagonists currently in clinical trials. As an original approach, it focuses on the crucial role of pharmacokinetics and ability to pass the blood-brain barrier in the discovery of new agents for treating CNS disorders. Considering that A2A receptor antagonist istradefylline is already commercially available for Parkinson's disease treatment, if the proof of concept of these ligands in AD is confirmed and reinforced, it will be easier to offer a new hope for AD patients.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Química Farmacéutica , Hipocampo/metabolismo , Humanos , Antagonistas de Receptores Purinérgicos P1/metabolismo , Receptor de Adenosina A2A/metabolismo
7.
Molecules ; 26(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576918

RESUMEN

Opioid analgesics are clinically used to relieve severe pain in acute postoperative and cancer pain, and also in the long term in chronic pain. The analgesic action is mediated by µ-, δ-, and κ-receptors, but currently, with few exceptions for k-agonists, µ-agonists are the only ones used in therapy. Previously synthesized compounds with diazotricyclodecane cores (DTDs) have shown their effectiveness in binding opioid receptors. Fourteen novel diazatricyclodecanes belonging to the 9-propionyl-10-substituted-9,10-diazatricyclo[4.2.1.12,5]decane (compounds 20-23, 53, 57 and 59) and 2-propionyl-7-substituted-2,7-diazatricyclo[4.4.0.03,8]decane (compounds 24-27, 54, 58 and 60) series, respectively, have been synthesized and their ability to bind to the opioid µ-, δ- and κ-receptors was evaluated. Five of these derivatives, compounds 20, 21, 24, 26 and 53, showed µ-affinity in the nanomolar range with a negligible affinity towards δ- and κ-receptors and high µ-receptor selectivity. The synthesized compounds showed µ-receptor selectivity higher than those of previously reported methylarylcinnamyl analogs.


Asunto(s)
Receptores Opioides , Analgésicos , Modelos Moleculares
8.
Cytokine ; 125: 154777, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400640

RESUMEN

Literature studies suggest important protective effects of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) on inflammatory pathways affecting joint and cerebral diseases. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. Therefore the aim of this study was to identify the molecular targets of PEMFs anti-neuroinflammatory action. The effects of PEMF exposure in cytokine production by lipopolysaccharide (LPS)-activated N9 microglial cells as well as the pathways involved, including adenylyl cyclase (AC), phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and delta (PKC-δ), p38, ERK1/2, JNK1/2 mitogen activated protein kinases (MAPK), Akt and caspase 1, were investigated. In addition, the ability of PEMFs to modulate ROS generation, cell invasion and phagocytosis, was addressed. PEMFs reduced the LPS-increased production of TNF-α and IL-1ß in N9 cells, through a pathway involving JNK1/2. Furthermore, they decreased the LPS-induced release of IL-6, by a mechanism not dependent on AC, PLC, PKC-ε, PKC-δ, p38, ERK1/2, JNK1/2, Akt and caspase 1. Importantly, a significant effect of PEMFs in the reduction of crucial cell functions specific of microglia like ROS generation, cell invasion and phagocytosis was found. PEMFs inhibit neuroinflammation in N9 cells through a mechanism involving, at least in part, the activation of JNK MAPK signalling pathway and may be relevant to treat a variety of diseases characterized by neuroinflammation.


Asunto(s)
Inflamación/metabolismo , Interleucina-1beta/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Microglía/efectos de la radiación , Factor de Necrosis Tumoral alfa/metabolismo , Inhibidores de Adenilato Ciclasa/farmacología , Adenilil Ciclasas/metabolismo , Animales , Caspasa 1/metabolismo , Línea Celular , Citocinas/metabolismo , Campos Electromagnéticos , Interleucina-6/metabolismo , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/metabolismo , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos , Microglía/enzimología , Microglía/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/efectos de la radiación , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Bioorg Chem ; 102: 104072, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32693307

RESUMEN

A small library of 3-thia-7,9-diazabicyclo[3.3.1]nonanes was synthesized and their opioid receptors affinity and selectivity evaluated. Among these novel sulfur-bridged compounds, the (E) 9-[3'-(3-chlorophenyl)-but-2'-en-1'-yl]-7-propionyl-3-thia-7,9-diazabicyclo[3.3.1]nonane 2i emerged as the derivative with the highest µ receptor affinity (Ki = 85 nM) and selectivity (Ki µ/δ = 58.8, Ki µ/κ > 117.6). The antinociceptive activity of 2i was also evaluated in acute thermal pain. Docking studies disclosed the specific pattern of interactions of these derivatives.


Asunto(s)
Alcanos/síntesis química , Simulación del Acoplamiento Molecular/métodos , Azufre/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
10.
J Cell Physiol ; 234(9): 15089-15097, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30656694

RESUMEN

Low-energy low-frequency pulsed electromagnetic fields (PEMFs) exert several protective effects, such as the regulation of kinases, transcription factors as well as cell viability in both central and peripheral biological systems. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. In this study, we have characterized in nerve growth factor-differentiated pheochromocytoma PC12 cells injured with hypoxia: (i) the effects of PEMF exposure on cell vitality; (ii) the protective pathways activated by PEMFs to relief neuronal cell death, including adenylyl cyclase, phospholipase C, protein kinase C epsilon and delta, p38, ERK1/2, JNK1/2 mitogen-activated protein kinases, Akt and caspase-3; (iii) the regulation by PEMFs of prosurvival heat-shock proteins of 70 (HSP70), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 family proteins. The results obtained in this study show a protective effect of PEMFs that are able to reduce neuronal cell death induced by hypoxia by modulating p38, HSP70, CREB, BDNF, and Bcl-2 family proteins. Specifically, we found a rapid activation (30 min) of p38 kinase cascade, which in turns enrolles HSP70 survival chaperone molecule, resulting in a significant CREB phosphorylation increase (24 hr). In this cascade, later (48 hr), BDNF and the antiapoptotic pathway regulated by the Bcl-2 family of proteins are recruited by PEMFs to enhance neuronal survival. This study paves the way to elucidate the mechanisms triggered by PEMFs to act as a new neuroprotective approach to treat cerebral ischemia by reducing neuronal cell death.

11.
Med Res Rev ; 38(4): 1031-1072, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28682469

RESUMEN

The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Artritis Reumatoide/tratamiento farmacológico , Carcinoma Hepatocelular/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Psoriasis/tratamiento farmacológico , Receptor de Adenosina A3/metabolismo , Sitio Alostérico , Animales , Ensayos Clínicos como Asunto , Cristalografía por Rayos X , Humanos , Sistema Inmunológico , Ratones , Simulación de Dinámica Molecular , Ratas , Relación Estructura-Actividad
12.
Pharmacol Rev ; 67(1): 74-102, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25387804

RESUMEN

By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.


Asunto(s)
Adenosina/metabolismo , Receptor de Adenosina A3/metabolismo , Transducción de Señal/efectos de los fármacos , Agonistas del Receptor de Adenosina A3/uso terapéutico , Antagonistas del Receptor de Adenosina A3/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antineoplásicos/uso terapéutico , Diseño de Fármacos , Historia del Siglo XX , Humanos , Ligandos , Terapia Molecular Dirigida , Receptor de Adenosina A3/efectos de los fármacos , Receptor de Adenosina A3/historia
13.
Med Res Rev ; 37(4): 936-983, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27976413

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.


Asunto(s)
Capsaicina/análogos & derivados , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/farmacología , Animales , Capsaicina/química , Capsaicina/farmacología , Química Farmacéutica , Humanos , Relación Estructura-Actividad , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
14.
J Cell Physiol ; 232(5): 1200-1208, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27639248

RESUMEN

In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Campos Electromagnéticos , Inflamación/patología , Microglía/patología , Neuronas/patología , Animales , Muerte Celular , Hipoxia de la Célula , Citocinas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos , Ratones , Microglía/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Pharmacol Res ; 117: 9-19, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27974241

RESUMEN

The hallmark of neuroinflammation is the activation of microglia, the immunocompetent cells of the CNS, releasing a number of proinflammatory mediators implicated in the pathogenesis of neuronal diseases. Adenosine is an ubiquitous autacoid regulating several microglia functions through four receptor subtypes named A1, A2A, A2B and A3 (ARs), that represent good targets to suppress inflammation occurring in CNS. Here we investigated the potential role of ARs in the modulation of IL-6 secretion and cell proliferation in primary microglial cells. The A2BAR agonist 2-[[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (BAY60-6583) stimulated IL-6 increase under normoxia and hypoxia, in a dose- and time-dependent way. In cells incubated with the blockers of phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and PKC delta (PKC-δ) the IL-6 increase due to A2BAR activation was strongly reduced, whilst it was not affected by the inhibitor of adenylyl cyclase (AC). Investigation of cellular signalling involved in the A2BAR effect revealed that only the inhibitor of p38 mitogen activated protein kinase (MAPK) was able to block the agonist's effect on IL-6 secretion, whilst inhibitors of pERK1/2, JNK1/2 MAPKs and Akt were not. Stimulation of p38 by BAY60-6583 was A2BAR-dependent, through a pathway affecting PLC, PKC-ε and PKC-δ but not AC, in both normoxia and hypoxia. Finally, BAY60-6583 increased microglial cell proliferation involving A2BAR, PLC, PKC-ε, PKC-δ and p38 signalling. In conclusion, A2BARs activation increased IL-6 secretion and cell proliferation in murine primary microglial cells, through PLC, PKC-ε, PKC-δ and p38 pathways, thus suggesting their involvement in microglial activation and neuroinflammation.


Asunto(s)
Interleucina-6/metabolismo , Microglía/metabolismo , Receptor de Adenosina A2B/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adenosina/metabolismo , Aminopiridinas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Hipoxia/metabolismo , Ratones , Ratones Endogámicos BALB C , Microglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
Mediators Inflamm ; 2017: 2740963, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28255202

RESUMEN

Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs) on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.


Asunto(s)
Campos Electromagnéticos , Receptores Purinérgicos P1/metabolismo , Animales , Antiinflamatorios/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Transducción de Señal
17.
Adv Exp Med Biol ; 1051: 193-232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28676923

RESUMEN

Adenosine, the purine nucleoside, mediates its effects through activation of four G-protein coupled adenosine receptors (ARs) named as A1, A2A, A2B and A3. In particular, A1ARs are distributed through the body, primarily inhibitory in the regulation of adenylyl cyclase activity and able to reduce the cyclic AMP levels. Considerable advances have been made in the pharmacological and molecular characterization of A1ARs, which had been proposed as targets for the discovery and drug design of antagonists, agonists and allosteric enhancers. Several lines of evidence indicate that adenosine interacting with A1ARs may be an endogenous protective agent in the human body since it prevents the damage caused by various pathological conditions, such as in ischemia/hypoxia, epileptic seizures, excitotoxic neuronal injury and cardiac arrhythmias in cardiovascular system. It has also been reported that one of the most promising targets for the development of new anxiolytic drugs could be A1ARs, and that their activation may reduce pain signaling in the spinal cord. A1AR antagonists induce diuresis and natriuresis in various experimental models, mediating the inhibition of A1ARs in the proximal tubule which is primarily responsible for reabsorption and fluid uptake. In addition, the results of various studies indicate that adenosine is present within pancreatic islets and is implicated through A1ARs in the regulation of insulin secretion and in glucose concentrations. In the present paper it will become apparent that A1ARs could be implicated in the pharmacological treatment of several pathologies with an important influence on human health.


Asunto(s)
Agonistas del Receptor de Adenosina A1/uso terapéutico , Antagonistas del Receptor de Adenosina A1/uso terapéutico , Arritmias Cardíacas , Descubrimiento de Drogas , Isquemia , Dolor , Receptor de Adenosina A1/metabolismo , Convulsiones , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Humanos , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo
18.
Int J Mol Sci ; 18(4)2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338619

RESUMEN

Rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) are chronic inflammatory rheumatic diseases that affect joints, causing debilitating pain and disability. Adenosine receptors (ARs) play a key role in the mechanism of inflammation, and the activation of A2A and A3AR subtypes is often associated with a reduction of the inflammatory status. The aim of this study was to investigate the involvement of ARs in patients suffering from early-RA (ERA), RA, AS and PsA. Messenger RNA (mRNA) analysis and saturation binding experiments indicated an upregulation of A2A and A3ARs in lymphocytes obtained from patients when compared with healthy subjects. A2A and A3AR agonists inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation and reduced inflammatory cytokines release, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6. Moreover, A2A and A3AR activation mediated a reduction of metalloproteinases (MMP)-1 and MMP-3. The effect of the agonists was abrogated by selective antagonists demonstrating the direct involvement of these receptor subtypes. Taken together, these data confirmed the involvement of ARs in chronic autoimmune rheumatic diseases highlighting the possibility to exploit A2A and A3ARs as therapeutic targets, with the aim to limit the inflammatory responses usually associated with RA, AS and PsA.


Asunto(s)
Artritis Psoriásica/patología , Artritis Reumatoide/patología , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A3/metabolismo , Espondilitis Anquilosante/patología , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Agonistas del Receptor de Adenosina A2/química , Agonistas del Receptor de Adenosina A2/metabolismo , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/metabolismo , Agonistas del Receptor de Adenosina A3/química , Agonistas del Receptor de Adenosina A3/metabolismo , Antagonistas del Receptor de Adenosina A3/química , Antagonistas del Receptor de Adenosina A3/metabolismo , Artritis Psoriásica/metabolismo , Artritis Reumatoide/metabolismo , Estudios de Casos y Controles , Citocinas/metabolismo , Femenino , Humanos , Cinética , Linfocitos/metabolismo , Masculino , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Persona de Mediana Edad , FN-kappa B/metabolismo , Fenetilaminas/química , Fenetilaminas/metabolismo , Pirazoles/química , Pirazoles/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , ARN Mensajero/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A3/genética , Espondilitis Anquilosante/metabolismo
19.
Bioorg Med Chem ; 24(21): 5291-5301, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624523

RESUMEN

Pyrazolo[5,1-f][1,6]naphthyridine-carboxamide derivatives were synthesized and evaluated for the affinity at CB1 and CB2 receptors. Based on the AgOTf and proline-cocatalyzed multicomponent methodology, the ethyl 5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (12) and ethyl 5-(2,4-dichlorophenyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (13) intermediates were synthesized from the appropriate o-alkynylaldehydes, p-toluenesulfonyl hydrazide and ethyl pyruvate. Most of the novel compounds feature a p-tolyl (8a-i) or a 2,4-dichlorophenyl (8j) motif at the C5-position of the tricyclic pyrazolo[5,1-f][1,6]naphthyridine scaffold. Structural variation on the carboxamide moiety at the C2-position includes basic monocyclic, terpenoid and adamantine-based amines. Among these derivatives, compound 8h (N-adamant-1-yl-5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxamide) exhibited the highest CB2 receptor affinity (Ki=33nM) and a high degree of selectivity (KiCB1/KiCB2=173:1), whereas a similar trend in the near nM range was seen for the bornyl analogue (compound 8f, Ki=53nM) and the myrtanyl derivative 8j (Ki=67nM). Effects of 8h, 8f and 8j on forskolin-stimulated cAMP levels were determined, showing antagonist/inverse agonist properties for such compounds. Docking studies conducted for these derivatives and the reference antagonist/inverse agonist compound 4 (SR144528) disclosed the specific pattern of interactions probably related to the pyrazolo[5,1-f][1,6]naphthyridine scaffold as CB2 inverse agonists.


Asunto(s)
Modelos Moleculares , Naftiridinas/química , Naftiridinas/farmacología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Naftiridinas/síntesis química , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Relación Estructura-Actividad
20.
Glia ; 63(11): 1933-1952, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25980546

RESUMEN

Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015;63:1933-1952.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA