Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7887): 127-132, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695837

RESUMEN

Considerable uncertainty surrounds the timeline of introductions and onsets of local transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) globally1-7. Although a limited number of SARS-CoV-2 introductions were reported in January and February 2020 (refs.8,9), the narrowness of the initial testing criteria, combined with a slow growth in testing capacity and porous travel screening10, left many countries vulnerable to unmitigated, cryptic transmission. Here we use a global metapopulation epidemic model to provide a mechanistic understanding of the early dispersal of infections and the temporal windows of the introduction of SARS-CoV-2 and onset of local transmission in Europe and the USA. We find that community transmission of SARS-CoV-2 was likely to have been present in several areas of Europe and the USA by January 2020, and estimate that by early March, only 1 to 4 in 100 SARS-CoV-2 infections were detected by surveillance systems. The modelling results highlight international travel as the key driver of the introduction of SARS-CoV-2, with possible introductions and transmission events as early as December 2019 to January 2020. We find a heterogeneous geographic distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78% to 15.2% across US states and 0.19% to 13.2% in European countries. Our approach complements phylogenetic analyses and other surveillance approaches and provides insights that can be used to design innovative, model-driven surveillance systems that guide enhanced testing and response strategies.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Modelos Epidemiológicos , SARS-CoV-2/aislamiento & purificación , Viaje en Avión/estadística & datos numéricos , COVID-19/mortalidad , COVID-19/virología , China/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Europa (Continente)/epidemiología , Humanos , Densidad de Población , Factores de Tiempo , Estados Unidos/epidemiología
2.
BMC Infect Dis ; 24(1): 450, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684947

RESUMEN

Quantifying the potential spatial spread of an infectious pathogen is key to defining effective containment and control strategies. The aim of this study is to estimate the risk of SARS-CoV-2 transmission at different distances in Italy before the first regional lockdown was imposed, identifying important sources of national spreading. To do this, we leverage on a probabilistic model applied to daily symptomatic cases retrospectively ascertained in each Italian municipality with symptom onset between January 28 and March 7, 2020. Results are validated using a multi-patch dynamic transmission model reproducing the spatiotemporal distribution of identified cases. Our results show that the contribution of short-distance ( ≤ 10 k m ) transmission increased from less than 40% in the last week of January to more than 80% in the first week of March 2020. On March 7, 2020, that is the day before the first regional lockdown was imposed, more than 200 local transmission foci were contributing to the spread of SARS-CoV-2 in Italy. At the time, isolation measures imposed only on municipalities with at least ten ascertained cases would have left uncontrolled more than 75% of spillover transmission from the already affected municipalities. In early March, national-wide restrictions were required to curb short-distance transmission of SARS-CoV-2 in Italy.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/prevención & control , Humanos , Italia/epidemiología , Estudios Retrospectivos , Análisis Espacio-Temporal , Pandemias , Modelos Estadísticos
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33414277

RESUMEN

After the national lockdown imposed on March 11, 2020, the Italian government has gradually resumed the suspended economic and social activities since May 4, while maintaining the closure of schools until September 14. We use a model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission to estimate the health impact of different exit strategies. The strategy adopted in Italy kept the reproduction number Rt at values close to one until the end of September, with marginal regional differences. Based on the estimated postlockdown transmissibility, reopening of workplaces in selected industrial activities might have had a minor impact on the transmissibility. Reopening educational levels in May up to secondary schools might have influenced SARS-CoV-2 transmissibility only marginally; however, including high schools might have resulted in a marked increase of the disease burden. Earlier reopening would have resulted in disproportionately higher hospitalization incidence. Given community contacts in September, we project a large second wave associated with school reopening in the fall.


Asunto(s)
COVID-19/prevención & control , Control de Enfermedades Transmisibles/métodos , Cuarentena/métodos , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Hospitalización , Humanos , Italia/epidemiología , Modelos Teóricos , Pandemias , Distanciamiento Físico , Estudios Retrospectivos , SARS-CoV-2/aislamiento & purificación , Instituciones Académicas
4.
Emerg Infect Dis ; 29(7): 1429-1432, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347815

RESUMEN

We estimated the mean serial interval for Sudan virus in Uganda to be 11.7 days (95 CI% 8.2-15.8 days). Estimates for the 2022 outbreak indicate a mean basic reproduction number of 2.4-2.7 (95% CI 1.7-3.5). Estimated net reproduction numbers across districts suggest a marked spatial heterogeneity.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/epidemiología , Uganda/epidemiología , Brotes de Enfermedades , Número Básico de Reproducción
5.
Proc Natl Acad Sci U S A ; 117(48): 30118-30125, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203683

RESUMEN

Political and environmental factors-e.g., regional conflicts and global warming-increase large-scale migrations, posing extraordinary societal challenges to policymakers of destination countries. A common concern is that such a massive arrival of people-often from a country with a disrupted healthcare system-can increase the risk of vaccine-preventable disease outbreaks like measles. We analyze human flows of 3.5 million (M) Syrian refugees in Turkey inferred from massive mobile-phone data to verify this concern. We use multilayer modeling of interdependent social and epidemic dynamics to demonstrate that the risk of disease reemergence in Turkey, the main host country, can be dramatically reduced by 75 to 90% when the mixing of Turkish and Syrian populations is high. Our results suggest that maximizing the dispersal of refugees in the recipient population contributes to impede the spread of sustained measles epidemics, rather than favoring it. Targeted vaccination campaigns and policies enhancing social integration of refugees are the most effective strategies to reduce epidemic risks for all citizens.


Asunto(s)
Brotes de Enfermedades , Sarampión/epidemiología , Difusión , Geografía , Humanos , Sarampión/inmunología , Factores de Riesgo , Turquía/epidemiología
6.
Euro Surveill ; 28(19)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37166763

RESUMEN

BackgroundMeningococcus (Neisseria meningitidis) is the causative bacteria of invasive meningococcal disease (IMD), a major cause of meningitis and sepsis. In 2015-16, an outbreak caused by serogroup C meningococci (MenC), belonging to the hyperinvasive strain ST-11(cc-11), resulted in 62 IMD cases in the region of Tuscany, Italy.AimWe aimed to estimate the key outbreak parameters and assess the impact of interventions used in the outbreak response.MethodsWe developed a susceptible-carrier-susceptible individual-based model of MenC transmission, accounting for transmission in households, schools, discos/clubs and the general community, which was informed by detailed data on the 2015-16 outbreak (derived from epidemiological investigations) and on the implemented control measures.ResultsThe outbreak reproduction number (Re) was 1.35 (95% prediction interval: 1.13-1.47) and the IMD probability was 4.6 for every 1,000 new MenC carriage episodes (95% confidence interval: 1.8-12.2). The interventions, i.e. chemoprophylaxis and vaccination of close contacts of IMD cases as well as age-targeted vaccination, were effective in reducing Re and ending the outbreak. Case-based interventions (including ring vaccination) alone would have been insufficient to achieve outbreak control. The definition of age groups to prioritise vaccination had a critical impact on the effectiveness and efficiency of control measures.ConclusionsOur findings suggest that there are no effective alternatives to widespread reactive vaccination during outbreaks of highly transmissible MenC strains. Age-targeted campaigns can increase the effectiveness of vaccination campaigns. These results can be instrumental to define effective guidelines for the control of future meningococcal outbreaks caused by hypervirulent strains.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo C , Neisseria meningitidis , Humanos , Brotes de Enfermedades/prevención & control , Italia/epidemiología , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/prevención & control , Infecciones Meningocócicas/microbiología
7.
Clin Infect Dis ; 74(5): 893-896, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34134145

RESUMEN

We analyzed 221 coronavirus disease 2019 cases identified between June 2020 and January 2021 in 6074 individuals screened for immunoglobulin G antibodies in May 2020, representing 77% of residents of 5 Italian municipalities. The relative risk of developing symptomatic infection in seropositive participants was 0.055 (95% confidence interval, .014-.220).


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , Reinfección
8.
Emerg Infect Dis ; 28(10): 2078-2081, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35994726

RESUMEN

We analyzed the first 255 PCR-confirmed cases of monkeypox in Italy in 2022. Preliminary estimates indicate mean incubation period of 9.1 (95% CI 6.5-10.9) days, mean generation time of 12.5 (95% CI 7.5-17.3) days, and reproduction number among men who have sex with men of 2.43 (95% CI 1.82-3.26).


Asunto(s)
Mpox , Minorías Sexuales y de Género , Homosexualidad Masculina , Humanos , Periodo de Incubación de Enfermedades Infecciosas , Italia/epidemiología , Masculino , Monkeypox virus , Reproducción
9.
Am J Epidemiol ; 191(1): 137-146, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652416

RESUMEN

During the spring of 2020, the coronavirus disease 2019 (COVID-19) epidemic caused an unprecedented demand for intensive-care resources in the Lombardy region of Italy. Using data on 43,538 hospitalized patients admitted between February 21 and July 12, 2020, we evaluated variations in intensive care unit (ICU) admissions and mortality over the course of 3 periods: the early phase of the pandemic (February 21-March 13), the period of highest pressure on the health-care system (March 14-April 25, when numbers of COVID-19 patients exceeded prepandemic ICU bed capacity), and the declining phase (April 26-July 12). Compared with the early phase, patients aged 70 years or more were less often admitted to an ICU during the period of highest pressure on the health-care system (odds ratio (OR) = 0.47, 95% confidence interval (CI): 0.41, 0.54), with longer ICU delays (incidence rate ratio = 1.82, 95% CI: 1.52, 2.18) and lower chances of dying in the ICU (OR = 0.47, 95% CI: 0.34, 0.64). Patients under 56 years of age had more limited changes in the probability of (OR = 0.65, 95% CI: 0.56, 0.76) and delay to (incidence rate ratio = 1.16, 95% CI: 0.95, 1.42) ICU admission and increased mortality (OR = 1.43, 95% CI: 1.00, 2.07). In the declining phase, all quantities decreased for all age groups. These patterns may suggest that limited health-care resources during the peak phase of the epidemic in Lombardy forced a shift in ICU admission criteria to prioritize patients with higher chances of survival.


Asunto(s)
COVID-19/epidemiología , COVID-19/terapia , Atención a la Salud/estadística & datos numéricos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/mortalidad , Comorbilidad , Humanos , Italia/epidemiología , Persona de Mediana Edad , Pandemias , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Factores Sexuales , Factores de Tiempo
10.
Bull World Health Organ ; 100(2): 161-167, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35125541

RESUMEN

PROBLEM: After Italy's first national restriction measures in 2020, a robust approach was needed to monitor the emerging epidemic of coronavirus disease 2019 (COVID-19) at subnational level and provide data to inform the strengthening or easing of epidemic control measures. APPROACH: We adapted the European Centre for Disease Prevention and Control rapid risk assessment tool by including quantitative and qualitative indicators from existing national surveillance systems. We defined COVID-19 risk as a combination of the probability of uncontrolled transmission of severe acute respiratory syndrome coronavirus 2 and of an unsustainable impact of COVID-19 cases on hospital services, adjusted in relation to the health system's resilience. The monitoring system was implemented with no additional cost in May 2020. LOCAL SETTING: The infectious diseases surveillance system in Italy uses consistent data collection methods across the country's decentralized regions and autonomous provinces. RELEVANT CHANGES: Weekly risk assessments using this approach were sustainable in monitoring the epidemic at regional level from 4 May 2020 to 24 September 2021. The tool provided reliable assessments of when and where a rapid increase in demand for health-care services would occur if control or mitigation measures were not increased in the following 3 weeks. LESSONS LEARNT: Although the system worked well, framing the risk assessment tool in a legal decree hampered its flexibility, as indicators could not be changed without changing the law. The relative complexity of the tool, the impossibility of real-time validation and its use for the definition of restrictions posed communication challenges.


Asunto(s)
COVID-19 , Epidemias , Humanos , Italia/epidemiología , Medición de Riesgo , SARS-CoV-2
11.
Epidemiol Infect ; 150: e166, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35450542

RESUMEN

INTRODUCTION: EURO2020 generated a growing media and population interest across the month period, that peaked with large spontaneous celebrations across the country upon winning the tournament. METHODS: We retrospectively analysed data from the national surveillance system (indicator-based) and from event-based surveillance to assess how the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) changed in June-July 2021 and to describe cases and clusters linked with EURO2020. RESULTS: Widespread increases in transmission and case numbers, mainly among younger males, were documented in Italy, none were linked with stadium attendance. Vaccination coverage against SARS-CoV-2 was longer among cases linked to EURO2020 than among the general population. CONCLUSIONS: Transmission increased across the country, mainly due to gatherings outside the stadium, where, conversely, strict infection control measures were enforced. These informal 'side' gatherings were dispersed across the entire country and difficult to control. Targeted communication and control strategies to limit the impact of informal gatherings occurring outside official sites of mass gathering events should be further developed.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Humanos , Italia/epidemiología , Masculino , Pandemias/prevención & control , Estudios Retrospectivos , SARS-CoV-2
12.
Epidemiol Infect ; 151: e5, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36524247

RESUMEN

Quantitative information on epidemiological quantities such as the incubation period and generation time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is scarce. We analysed a dataset collected during contact tracing activities in the province of Reggio Emilia, Italy, throughout 2021. We determined the distributions of the incubation period for the Alpha and Delta variants using information on negative polymerase chain reaction tests and the date of last exposure from 282 symptomatic cases. We estimated the distributions of the intrinsic generation time using a Bayesian inference approach applied to 9724 SARS-CoV-2 cases clustered in 3545 households where at least one secondary case was recorded. We estimated a mean incubation period of 4.9 days (95% credible intervals, CrI, 4.4-5.4) for Alpha and 4.5 days (95% CrI 4.0-5.0) for Delta. The intrinsic generation time was estimated to have a mean of 7.12 days (95% CrI 6.27-8.44) for Alpha and of 6.52 days (95% CrI 5.54-8.43) for Delta. The household serial interval was 2.43 days (95% CrI 2.29-2.58) for Alpha and 2.74 days (95% CrI 2.62-2.88) for Delta, and the estimated proportion of pre-symptomatic transmission was 48-51% for both variants. These results indicate limited differences in the incubation period and intrinsic generation time of SARS-CoV-2 variants Alpha and Delta compared to ancestral lineages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Trazado de Contacto , Teorema de Bayes , Periodo de Incubación de Enfermedades Infecciosas
13.
BMC Public Health ; 22(1): 19, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991544

RESUMEN

BACKGROUND: Despite thousands of influenza cases annually recorded by surveillance systems around the globe, estimating the transmission patterns of seasonal influenza is challenging. METHODS: We develop an age-structured mathematical model to influenza transmission to analyze ten consecutive seasons (from 2010 to 2011 to 2019-2020) of influenza epidemiological and virological data reported to the Italian surveillance system. RESULTS: We estimate that 18.4-29.3% of influenza infections are detected by the surveillance system. Influenza infection attack rate varied between 12.7 and 30.5% and is generally larger for seasons characterized by the circulation of A/H3N2 and/or B types/subtypes. Individuals aged 14 years or less are the most affected age-segment of the population, with A viruses especially affecting children aged 0-4 years. For all influenza types/subtypes, the mean effective reproduction number is estimated to be generally in the range 1.09-1.33 (9 out of 10 seasons) and never exceeding 1.41. The age-specific susceptibility to infection appears to be a type/subtype-specific feature. CONCLUSIONS: The results presented in this study provide insights on type/subtype-specific transmission patterns of seasonal influenza that could be instrumental to fine-tune immunization strategies and non-pharmaceutical interventions aimed at limiting seasonal influenza spread and burden.


Asunto(s)
Gripe Humana , Niño , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/prevención & control , Italia/epidemiología , Estaciones del Año , Vacunación
14.
Proc Natl Acad Sci U S A ; 116(29): 14599-14605, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262808

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a primarily nosocomial pathogen that, in recent years, has increasingly spread to the general population. The rising prevalence of MRSA in the community implies more frequent introductions in healthcare settings that could jeopardize the effectiveness of infection-control procedures. To investigate the epidemiological dynamics of MRSA in a low-prevalence country, we developed an individual-based model (IBM) reproducing the population's sociodemography, explicitly representing households, hospitals, and nursing homes. The model was calibrated to surveillance data from the Norwegian national registry (2008-2015) and to published household prevalence data. We estimated an effective reproductive number of 0.68 (95% CI 0.47-0.90), suggesting that the observed rise in MRSA infections is not due to an ongoing epidemic but driven by more frequent acquisitions abroad. As a result of MRSA importations, an almost twofold increase in the prevalence of carriage was estimated over the study period, in 2015 reaching a value of 0.37% (0.25-0.54%) in the community and 1.11% (0.79-1.59%) in hospitalized patients. Household transmission accounted for half of new MRSA acquisitions, indicating this setting as a potential target for preventive strategies. However, nosocomial acquisition was still the primary source of symptomatic disease, which reinforces the importance of hospital-based transmission control. Although our results indicate little reason for concern about MRSA transmission in low-prevalence settings in the immediate future, the increases in importation and global circulation highlight the need for coordinated initiatives to reduce the spread of antibiotic resistance worldwide.


Asunto(s)
Infecciones Comunitarias Adquiridas/transmisión , Infección Hospitalaria/transmisión , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Modelos Biológicos , Infecciones Estafilocócicas/transmisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Portador Sano/epidemiología , Niño , Preescolar , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/microbiología , Simulación por Computador , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Femenino , Hospitales/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Meticilina/farmacología , Meticilina/uso terapéutico , Resistencia a la Meticilina , Persona de Mediana Edad , Noruega/epidemiología , Casas de Salud/estadística & datos numéricos , Prevalencia , Características de la Residencia/estadística & datos numéricos , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Adulto Joven
15.
Euro Surveill ; 27(5)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115077

RESUMEN

BackgroundSeveral SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.MethodsWe conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.ResultsThe Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.ConclusionWe assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Italia/epidemiología , Modelos Teóricos
16.
Euro Surveill ; 27(45)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367013

RESUMEN

BackgroundThe SARS-CoV-2 variant of concern Omicron was first detected in Italy in November 2021.AimTo comprehensively describe Omicron spread in Italy in the 2 subsequent months and its impact on the overall SARS-CoV-2 circulation at population level.MethodsWe analyse data from four genomic surveys conducted across the country between December 2021 and January 2022. Combining genomic sequencing results with epidemiological records collated by the National Integrated Surveillance System, the Omicron reproductive number and exponential growth rate are estimated, as well as SARS-CoV-2 transmissibility.ResultsOmicron became dominant in Italy less than 1 month after its first detection, representing on 3 January 76.9-80.2% of notified SARS-CoV-2 infections, with a doubling time of 2.7-3.3 days. As of 17 January 2022, Delta variant represented < 6% of cases. During the Omicron expansion in December 2021, the estimated mean net reproduction numbers respectively rose from 1.15 to a maximum of 1.83 for symptomatic cases and from 1.14 to 1.36 for hospitalised cases, while remaining relatively stable, between 0.93 and 1.21, for cases needing intensive care. Despite a reduction in relative proportion, Delta infections increased in absolute terms throughout December contributing to an increase in hospitalisations. A significant reproduction numbers' decline was found after mid-January, with average estimates dropping below 1 between 10 and 16 January 2022.ConclusionEstimates suggest a marked growth advantage of Omicron compared with Delta variant, but lower disease severity at population level possibly due to residual immunity against severe outcomes acquired from vaccination and prior infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Vacunación , Secuencia de Bases
17.
Emerg Infect Dis ; 27(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080168

RESUMEN

On March 11, 2020, Italy imposed a national lockdown to curtail the spread of severe acute respiratory syndrome coronavirus 2. We estimate that, 14 days after lockdown, the net reproduction number had dropped below 1 and remained stable at ¼0.76 (95% CI 0.67-0.85) in all regions for >3 of the following weeks.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles/métodos , SARS-CoV-2 , COVID-19/transmisión , Humanos , Italia/epidemiología , Salud Pública , Factores de Tiempo
18.
BMC Med ; 19(1): 89, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33832497

RESUMEN

BACKGROUND: COVID-19 spread may have a dramatic impact in countries with vulnerable economies and limited availability of, and access to, healthcare resources and infrastructures. However, in sub-Saharan Africa, a low prevalence and mortality have been observed so far. METHODS: We collected data on individuals' social contacts in the South West Shewa Zone (SWSZ) of Ethiopia across geographical contexts characterized by heterogeneous population density, work and travel opportunities, and access to primary care. We assessed how socio-demographic factors and observed mixing patterns can influence the COVID-19 disease burden, by simulating SARS-CoV-2 transmission in remote settlements, rural villages, and urban neighborhoods, under school closure mandate. RESULTS: From national surveillance data, we estimated a net reproduction number of 1.62 (95% CI 1.55-1.70). We found that, at the end of an epidemic mitigated by school closure alone, 10-15% of the population residing in the SWSZ would have been symptomatic and 0.3-0.4% of the population would require mechanical ventilation and/or possibly result in a fatal outcome. Higher infection attack rates are expected in more urbanized areas, but the highest incidence of critical disease is expected in remote subsistence farming settlements. School closure contributed to reduce the reproduction number by 49% and the attack rate of infections by 28-34%. CONCLUSIONS: Our results suggest that the relatively low burden of COVID-19 in Ethiopia observed so far may depend on social mixing patterns, underlying demography, and the enacted school closures. Our findings highlight that socio-demographic factors can also determine marked heterogeneities across different geographical contexts within the same region, and they contribute to understand why sub-Saharan Africa is experiencing a relatively lower attack rate of severe cases compared to high-income countries.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Cuarentena/tendencias , SARS-CoV-2/aislamiento & purificación , Instituciones Académicas/tendencias , Interacción Social , Adolescente , Adulto , COVID-19/prevención & control , Niño , Preescolar , Etiopía/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
PLoS Comput Biol ; 16(12): e1008467, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370263

RESUMEN

In January 2020, a COVID-19 outbreak was detected in Sichuan Province of China. Six weeks later, the outbreak was successfully contained. The aim of this work is to characterize the epidemiology of the Sichuan outbreak and estimate the impact of interventions in limiting SARS-CoV-2 transmission. We analyzed patient records for all laboratory-confirmed cases reported in the province for the period of January 21 to March 16, 2020. To estimate the basic and daily reproduction numbers, we used a Bayesian framework. In addition, we estimated the number of cases averted by the implemented control strategies. The outbreak resulted in 539 confirmed cases, lasted less than two months, and no further local transmission was detected after February 27. The median age of local cases was 8 years older than that of imported cases. We estimated R0 at 2.4 (95% CI: 1.6-3.7). The epidemic was self-sustained for about 3 weeks before going below the epidemic threshold 3 days after the declaration of a public health emergency by Sichuan authorities. Our findings indicate that, were the control measures be adopted four weeks later, the epidemic could have lasted 49 days longer (95% CI: 31-68 days), causing 9,216 more cases (95% CI: 1,317-25,545).


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades , COVID-19/virología , China/epidemiología , Femenino , Humanos , Masculino , SARS-CoV-2/aislamiento & purificación
20.
Proc Natl Acad Sci U S A ; 115(50): 12680-12685, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30463945

RESUMEN

The basic reproduction number is one of the conceptual cornerstones of mathematical epidemiology. Its classical definition as the number of secondary cases generated by a typical infected individual in a fully susceptible population finds a clear analytical expression in homogeneous and stratified mixing models. Along with the generation time (the interval between primary and secondary cases), the reproduction number allows for the characterization of the dynamics of an epidemic. A clear-cut theoretical picture, however, is hardly found in real data. Here, we infer from highly detailed sociodemographic data two multiplex contact networks representative of a subset of the Italian and Dutch populations. We then simulate an infection transmission process on these networks accounting for the natural history of influenza and calibrated on empirical epidemiological data. We explicitly measure the reproduction number and generation time, recording all individual-level transmission events. We find that the classical concept of the basic reproduction number is untenable in realistic populations, and it does not provide any conceptual understanding of the epidemic evolution. This departure from the classical theoretical picture is not due to behavioral changes and other exogenous epidemiological determinants. Rather, it can be simply explained by the (clustered) contact structure of the population. Finally, we provide evidence that methodologies aimed at estimating the instantaneous reproduction number can operationally be used to characterize the correct epidemic dynamics from incidence data.


Asunto(s)
Número Básico de Reproducción/estadística & datos numéricos , Trazado de Contacto/estadística & datos numéricos , Epidemias/estadística & datos numéricos , Gripe Humana/epidemiología , Simulación por Computador , Factores Epidemiológicos , Humanos , Gripe Humana/transmisión , Italia/epidemiología , Modelos Estadísticos , Países Bajos/epidemiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA