Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 126(40): 7342-7360, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36197134

RESUMEN

The reaction of HO2 with NO is one of the most important steps in radical cycling throughout the stratosphere and troposphere. Previous literature experimental work revealed a small yield of nitric acid (HONO2) directly from HO2 + NO. Atmospheric models previously treated HO2 + NO as radical recycling, but inclusion of this terminating step had large effects on atmospheric oxidative capacity and the concentrations of HONO2 and ozone (O3), among others. Here, the yield of HONO2, φHONO2, from the reaction of HO2 + NO was investigated in a flow tube reactor using mid-IR pulsed-cavity ringdown spectroscopy. HO2, produced by pulsed laser photolysis of Cl2 in the presence of methanol, reacted with NO in a buffer gas mixture of N2 and CO between 300 and 700 Torr at 278 and 300 K. HONO2 and its weakly bound isomer HOONO were directly detected by their v1 absorption bands in the mid-IR region. CO was used to suppress HONO2 produced from OH + NO2 and exploit a chemical amplification scheme, converting OH back to HO2. Under the experimental conditions described here, no evidence for the formation of either HONO2 or HOONO was observed from HO2 + NO. Using a comprehensive chemical model, constrained by observed secondary reaction products, all HONO2 detected in the system could be accounted for by OH + NO2. At 700 ± 14 Torr and 300 ± 3 K, φHONO2 = 0.00 ± 0.11% (2σ) with an upper limit of 0.11%. If all of the observed HONO2 was attributed to the HO2 + NO reaction, φHONO2 = 0.13 ± 0.07% with an upper limit of 0.20%. At 278 ± 2 K and 718 ± 14 Torr, we determine an upper limit, φHONO2 ≤ 0.37%. Our measurements are significantly lower than those previously reported, lying outside of the uncertainty of the current experimental and recommended literature values.

2.
Chem Rev ; 118(7): 3337-3390, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29522327

RESUMEN

Isoprene carries approximately half of the flux of non-methane volatile organic carbon emitted to the atmosphere by the biosphere. Accurate representation of its oxidation rate and products is essential for quantifying its influence on the abundance of the hydroxyl radical (OH), nitrogen oxide free radicals (NO x), ozone (O3), and, via the formation of highly oxygenated compounds, aerosol. We present a review of recent laboratory and theoretical studies of the oxidation pathways of isoprene initiated by addition of OH, O3, the nitrate radical (NO3), and the chlorine atom. From this review, a recommendation for a nearly complete gas-phase oxidation mechanism of isoprene and its major products is developed. The mechanism is compiled with the aims of providing an accurate representation of the flow of carbon while allowing quantification of the impact of isoprene emissions on HO x and NO x free radical concentrations and of the yields of products known to be involved in condensed-phase processes. Finally, a simplified (reduced) mechanism is developed for use in chemical transport models that retains the essential chemistry required to accurately simulate isoprene oxidation under conditions where it occurs in the atmosphere-above forested regions remote from large NO x emissions.

3.
J Phys Chem A ; 122(24): 5418-5436, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29738670

RESUMEN

The relative rates of C-C and C-H ß-scission reactions of isobutyl radicals (2-methylprop-1-yl, C4H9) were investigated with shock tube experiments at temperatures of (950 to 1250) K and pressures of (200 to 400) kPa. We produced isobutyl radicals from the decomposition of dilute mixtures of isopentylbenzene and observed the stable decomposition products, propene and isobutene. These alkenes are characteristic of C-C and C-H bond scission, respectively. Propene was the main product, approximately 30 times more abundant than isobutene, indicating that C-C ß-scission is the primary pathway. Uncertainty in the ratio of [isobutene]/[propene] from isobutyl decomposition is mainly due to a small amount of side chemistry, which we account for using a kinetics model based on JetSurF 2.0. Our data are well-described after adding chemistry specific to our system and adjusting some rate constants. We compare our data to other commonly used kinetics models: JetSurF 2.0, AramcoMech 2.0, and multiple models from Lawrence Livermore National Laboratory (LLNL). With the kinetics model, we have determined an upper limit of 3.0% on the branching fraction for C-H ß-scission in the isobutyl radical for the temperatures and pressures of our experiments. While this agrees with previous high quality experimental results, many combustion kinetics models assume C-H branching values above this upper limit, possibly leading to large systematic inaccuracies in model predictions. Some kinetics models additionally assume contributions from 1,2-H shift reactions-which for isobutyl would produce the same products as C-H ß-scission-and our upper limit includes possible involvement of such reactions. We suggest kinetics models should be updated to better reflect current experimental measurements.

4.
J Phys Chem A ; 122(49): 9518-9541, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30408956

RESUMEN

Evaluated site-specific rate constants for the reactions of isobutane with CH3 and H were determined in a combined analysis of new shock tube experiments and existing literature data. In our shock tube experiments, CH3 radicals, produced from the pyrolysis of di- tert-butylperoxide, and H atoms, produced from the pyrolysis of C2H5I, were reacted with dilute mixtures of isobutane in argon at 870-1130 K and 140-360 kPa, usually with a radical chain inhibitor. Propene and isobutene, measured with GC/FID and MS, were quantified as characteristic of H-abstraction from the primary and tertiary carbons, respectively. Using the method of uncertainty minimization using polynomial chaos expansions (MUM-PCE), a comprehensive Cantera kinetics model based on JetSurF 2.0 was optimized to our experiments and available literature data spanning ambient temperatures to 1327 K. Based on Bayes' theorem, MUM-PCE constrains the kinetics model to the experimental data. The isobutane literature data used for optimization included both raw experimental data and reported branching and total rate measurements. Data for ethane were also included to better define the absolute rate constant for abstraction of H from primary carbons. For both H and CH3, the optimization increased the relative rate of tertiary to primary H-abstraction compared with existing estimates, especially at higher temperatures. We combine the present data for primary and tertiary sites with previous results from our group on 1-butane to derive site-specific rate constants for the reaction of H and CH3 with generic primary, secondary, and tertiary carbons suitable for a wide range of temperatures.

5.
J Phys Chem A ; 117(39): 10006-17, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23641685

RESUMEN

We report vibrational and electronic spectra of the hydroxy-methyl-peroxy radical (HOCH2OO(•) or HMP), which was formed as the primary product of the reaction of the hydroperoxy radical, HO2(•), and formaldehyde, HCHO. The ν1 vibrational (OH stretch) spectrum and the à ← X̃ electronic spectrum of HMP were detected by infrared cavity ringdown spectroscopy (IR-CRDS), and assignments were verified with density functional calculations. The HMP radical was generated in reactions of HCHO with HO2(•). Free radical reactions were initiated by pulsed laser photolysis (PLP) of Cl2 in the presence of HCHO and O2 in a flow reactor at 300-330 Torr and 295 K. IR-CRDS spectra were measured in mid-IR and near-IR regions over the ranges 3525-3700 cm(-1) (ν1) and 7250-7800 cm(-1) (à ← X̃) respectively, at a delay time 100 µs after photolysis. The ν1 spectrum had an origin at 3622 cm(-1) and exhibited partially resolved P- and R-branch contours and a small Q-branch. At these short delay times, spectral interference from HOOH and HCOOH was minimal and could be subtracted. From B3LYP/6-31+G(d,p) calculations, we found that the anharmonic vibrational frequency and band contour predicted for the lowest energy conformer, HMP-A, were in good agreement with the observed spectrum. In the near-IR, we observed four well spaced vibronic bands, each with partially resolved rotational contours. We assigned the apparent origin of the à ← X̃ electronic spectrum of HMP at 7389 cm(-1) and two bands to the blue to a progression in ν15', the lowest torsional mode of the à state (ν15' = 171 cm(-1)). The band furthest to the red was assigned as a hot band in ν15″, leading to a ground state torsional frequency of (ν15″ = 122 cm(-1)). We simulated the spectrum using second order vibrational perturbation theory (VPT2) with B3LYP/6-31+G(d,p) calculations at the minimum energy geometries of the HMP-A conformer on the X̃ and à states. The predictions of the electronic origin frequency, torsional frequencies, anharmonicities, and rotational band contours matched the observed spectrum. We investigated the torsional modes more explicitly by computing potential energy surfaces of HMP as a function of the two dihedral angles τHOCO and τOOCO. Wave functions and energy levels were calculated on the basis of this potential surface; these results were used to calculate the Franck-Condon factors, which reproduced the vibronic band intensities in the observed electronic spectrum. The transitions that we observed all involved states with wave functions localized on the minimum energy conformer, HMP-A. Our calculations indicated that the observed near-IR spectrum was that of the lowest energy X̃ state conformer HMP-A, but that this conformer is not the lowest energy conformer in the à state, which remains unobserved. We estimated that the energy of this lowest conformer (HMP-B) of the à state is E0 (Ã, HMP-B) ≈ 7200 cm(-1), on the basis of the energy difference E0(HMP-B) - E0(HMP-A) on the à state computed at the B3LYP/6-31+G(d,p) level.

6.
J Phys Chem A ; 116(24): 6327-40, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22530669

RESUMEN

The primary products of n-butoxy and 2-pentoxy isomerization in the presence and absence of O(2) have been detected using pulsed laser photolysis-cavity ringdown spectroscopy (PLP-CRDS). Alkoxy radicals n-butoxy and 2-pentoxy were generated by photolysis of alkyl nitrite precursors (n-butyl nitrite or 2-pentyl nitrite, respectively), and the isomerization products with and without O(2) were detected by infrared cavity ringdown spectroscopy 20 µs after the photolysis. We report the mid-IR OH stretch (ν(1)) absorption spectra for δ-HO-1-C(4)H(8)•, δ-HO-1-C(4)H(8)OO•, δ-HO-1-C(5)H(10)•, and δ-HO-1-C(5)H(10)OO•. The observed ν(1) bands are similar in position and shape to the related alcohols (n-butanol and 2-pentanol), although the HOROO• absorption is slightly stronger than the HOR• absorption. We determined the rate of isomerization relative to reaction with O(2) for the n-butoxy and 2-pentoxy radicals by measuring the relative ν(1) absorbance of HOROO• as a function of [O(2)]. At 295 K and 670 Torr of N(2) or N(2)/O(2), we found rate constant ratios of k(isom)/k(O(2)) = 1.7 (±0.1) × 10(19) cm(-3) for n-butoxy and k(isom)/k(O(2)) = 3.4(±0.4) × 10(19) cm(-3) for 2-pentoxy (2σ uncertainty). Using currently known rate constants k(O(2)), we estimate isomerization rates of k(isom) = 2.4 (±1.2) × 10(5) s(-1) and k(isom) ≈ 3 × 10(5) s(-1) for n-butoxy and 2-pentoxy radicals, respectively, where the uncertainties are primarily due to uncertainties in k(O(2)). Because isomerization is predicted to be in the high pressure limit at 670 Torr, these relative rates are expected to be the same at atmospheric pressure. Our results include corrections for prompt isomerization of hot nascent alkoxy radicals as well as reaction with background NO and unimolecular alkoxy decomposition. We estimate prompt isomerization yields under our conditions of 4 ± 2% and 5 ± 2% for n-butoxy and 2-pentoxy formed from photolysis of the alkyl nitrites at 351 nm. Our measured relative rate values are in good agreement with and more precise than previous end-product analysis studies conducted on the n-butoxy and 2-pentoxy systems. We show that reactions typically neglected in the analysis of alkoxy relative kinetics (decomposition, recombination with NO, and prompt isomerization) may need to be included to obtain accurate values of k(isom)/k(O(2)).


Asunto(s)
Nitrito de Amila/química , Nitritos/química , Oxígeno/química , Cinética , Rayos Láser , Fotólisis , Análisis Espectral , Estereoisomerismo
7.
J Phys Chem A ; 115(33): 9180-7, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21755980

RESUMEN

The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed.


Asunto(s)
Arginina/química , Química Física/métodos , Deuterio/química , Dipéptidos/química , Glicina/química , Hidrógeno/química , Arginina/metabolismo , Deuterio/metabolismo , Dipéptidos/metabolismo , Gases/química , Glicina/metabolismo , Hidrógeno/metabolismo , Intercambio Iónico , Metales Alcalinos/química , Modelos Moleculares , Conformación Molecular , Protones , Sales (Química) , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA