Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 78(5): 1212-27, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20052756

RESUMEN

Evaluating the free-energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse-grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77-80) uses the CG model as a reference potential for free-energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. These applications include: evaluation of changes of folding energy upon mutations, calculations of transition-states binding free energies (which are crucial for rational enzyme design), evaluations of catalytic landscape, and evaluations of the time-dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed.


Asunto(s)
Simulación por Computador , Modelos Moleculares , Conformación Proteica , Proteínas/química , Secuencia de Aminoácidos , Enlace de Hidrógeno , Matemática , Datos de Secuencia Molecular , Pliegue de Proteína , Proteínas/genética , Proteínas/metabolismo , Electricidad Estática
2.
J Phys Chem B ; 110(12): 5854-64, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16553391

RESUMEN

We describe a simple multiplex vibrational spectroscopic imaging technique based on employing chirped femtosecond pulses in a coherent anti-Stokes Raman scattering (CARS) scheme. Overlap of a femtosecond Stokes pulse with chirped pump/probe pulses introduces a temporal gate that defines the spectral resolution of the technique, allowing single-shot acquisition of high spectral resolution CARS spectra over a several hundred wavenumber bandwidth. Simulated chirped (c-) CARS spectra match the experimental results, quantifying the dependence of the high spectral resolution on the properties of the chirped pulse. c-CARS spectromicroscopy offers promise as a simple and generally applicable high spatial resolution, chemically specific imaging technique for studying complex biological and materials samples.

3.
J Phys Chem B ; 110(11): 5301-9, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16539461

RESUMEN

Oxygen K-edge X-ray absorption spectra (XAS) of aqueous chloride solutions have been measured for Li(+), Na(+), K(+), NH(4)(+), C(NH(2))(3)(+), Mg(2+), and Ca(2+) at 2 and 4 M cation concentrations. Marked changes in the liquid water XAS are observed upon addition of the various monovalent cation chlorides that are nearly independent of the identity of the cation. This indicates that interactions with the dissolved monovalent cations do not significantly perturb the unoccupied molecular orbitals of water molecules in the vicinity of the cations and that water-chloride interactions are primarily responsible for the observed spectral changes. In contrast, the addition of the divalent cations engenders changes unique from the case of the monovalent cations, as well as from each other. Density functional theory calculations suggest that the ion-specific spectral variations arise primarily from direct electronic perturbation of the unoccupied orbitals due to the presence of the ions, probably as a result of differences in charge transfer from the water molecules onto the divalent cations.


Asunto(s)
Algoritmos , Compuestos Inorgánicos/química , Compuestos de Amonio Cuaternario/química , Agua/química , Cationes Bivalentes/química , Cationes Monovalentes/química , Cloruros/química , Enlace de Hidrógeno , Soluciones/química , Espectrometría por Rayos X/métodos , Termodinámica
4.
J Phys Chem B ; 110(3): 1166-71, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16471659

RESUMEN

The oxygen K edge X-ray absorption spectra of aqueous HCl and NaCl solutions reveal distinct perturbations of the local water molecules by the respective solutes. While the addition of NaCl leads to large spectral changes, the effect of HCl on the observed X-ray absorption spectrum is surprisingly small. Density functional theory calculations suggest that this difference primarily reflects a strong blue shift of the hydrated proton (in either the Eigen (H9O4+) or Zundel (H2O5+) forms) spectrum relative to that of H2O, indicating the tighter binding of electrons in H3O+. This spectral shift counteracts the spectral changes that arise from direct electrostatic perturbation of water molecules in the first solvation shell of Cl-. Consequently, the observed spectral changes effected by HCl addition are minimal compared to those engendered by NaCl. Additionally, these results indicate that the effect of monovalent cations on the nature of the unoccupied orbitals of water molecules in the first solvation shell is negligible, in contrast to the large effects of monovalent anions.


Asunto(s)
Electrones , Ácido Clorhídrico/química , Compuestos Onio/química , Protones , Cloruro de Sodio/química , Soluciones/química , Análisis Espectral , Agua/química , Rayos X
5.
J Phys Chem B ; 110(40): 20038-45, 2006 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17020392

RESUMEN

It was recently suggested that liquid water primarily comprises hydrogen-bonded rings and chains, as opposed to the traditionally accepted locally tetrahedral structure (Wernet et al. Science 2004, 304, 995). This controversial conclusion was primarily based on comparison between experimental and calculated X-ray absorption spectra (XAS) using computer-generated ice-like 11-molecule clusters. Here we present calculations which conclusively show that when hydrogen-bonding configurations are chosen randomly, the calculated XAS does not reproduce the experimental XAS regardless of the bonding model employed (i.e., rings and chains vs tetrahedral). Furthermore, we also present an analysis of a recently introduced asymmetric water potential (Soper, A. K. J. Phys.: Condens. Matter 2005, 17, S3273), which is representative of the rings and chains structure, and make comparisons with the standard SPC/E potential, which represents the locally tetrahedral structure. We find that the calculated XAS from both potentials is inconsistent with the experimental XAS. However, we also show the calculated electric field distribution from the rings and chains structure is strongly bimodal and highly inconsistent with the experimental Raman spectrum, thus casting serious doubt on the validity of the rings and chains model for liquid water.

6.
J Phys Chem B ; 109(15): 7046-52, 2005 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16851801

RESUMEN

Measurements of the oxygen K-edge X-ray absorption spectrum (XAS) of aqueous sodium halide solutions demonstrate that ions significantly perturb the electronic structure of adjacent water molecules. The addition of halide salts to water engenders an increase in the preedge intensity and a decrease in the postedge intensity of the XAS, analogous to those observed when increasing the temperature of pure water. The main-edge feature exhibits unique behavior and becomes more intense when salt is added. Density functional theory calculations of the XAS indicate that the observed red shift of the water transitions as a function of salt concentration arises from a strong, direct perturbation of the unoccupied molecular orbitals on water by anions, and does not require significant distortion of the hydrogen bond network beyond the first solvation shell. This contrasts the temperature-dependent spectral variations, which result primarily from intensity changes of specific transitions due to geometric rearrangement of the hydrogen bond network.


Asunto(s)
Química Física/métodos , Metales/química , Sales (Química)/química , Agua/química , Aniones/química , Cationes/química , Enlace de Hidrógeno , Iones , Distribución Normal , Sodio/química , Programas Informáticos , Espectrometría por Rayos X/métodos , Temperatura , Termodinámica , Rayos X
7.
J Phys Chem A ; 111(22): 4776-85, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17439200

RESUMEN

X-ray absorption spectra of aqueous 4 and 6 M potassium hydroxide solutions have been measured near the oxygen K edge. Upon addition of KOH to water, a new spectral feature (532.5 eV) emerges at energies well below the liquid water pre-edge feature (535 eV) and is attributed to OH- ions. In addition to spectral changes explicitly due to absorption by solvated OH- ions, calculated XA spectra indicate that first-solvation-shell water molecules exhibit an absorption spectrum that is unique from that of bulk liquid water. It is suggested that this spectral change results primarily from direct electronic perturbation of the unoccupied molecular orbitals of first-shell water molecules and only secondarily from geometric distortion of the local hydrogen bond network within the first hydration shell. Both the experimental and the calculated XA spectra indicate that the nature of the interaction between the OH- ion and the solvating water molecules is fundamentally different than the corresponding interactions of aqueous halide anions with respect to this direct orbital distortion. Analysis of the Mulliken charge populations suggests that the origin of this difference is a disparity in the charge asymmetry between the hydrogen atoms of the solvating water molecules. The charge asymmetry is induced both by electric field effects due to the presence of the anion and by charge transfer from the respective ions. The computational results also indicate that the OH- ion exists with a predominately "hyper-coordinated" solvation shell and that the OH- ion does not readily donate hydrogen bonds to the surrounding water molecules.

8.
Science ; 306(5697): 851-3, 2004 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-15514152

RESUMEN

A strong temperature dependence of oxygen K-edge x-ray absorption fine structure features was observed for supercooled and normal liquid water droplets prepared from the breakup of a liquid microjet. Analysis of the data over the temperature range 251 to 288 kelvin (-22 degrees to +15 degrees C) yields a value of 1.5 +/- 0.5 kilocalories per mole for the average thermal energy required to effect an observable rearrangement between the fully coordinated ("ice-like") and distorted ("broken-donor") local hydrogen-bonding configurations responsible for the pre-edge and post-edge features, respectively. This energy equals the latent heat of melting of ice with hexagonal symmetry (ice Ih) and is consistent with the distribution of hydrogen bond strengths obtained for the "overstructured" ST2 model of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA