Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 131(3): 239-257, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35770662

RESUMEN

BACKGROUND: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS: We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS: Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-ß1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS: Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Fosfoproteínas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fibrosis , Humanos , Ratones , Fosfoproteínas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Verteporfina , Proteínas Señalizadoras YAP
2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474123

RESUMEN

Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.


Asunto(s)
Cardiopatías , Células Madre Mesenquimatosas , Traumatismos por Radiación , Ratas , Humanos , Animales , Cardiotoxicidad/metabolismo , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fenotipo , Cardiopatías/metabolismo , Traumatismos por Radiación/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232943

RESUMEN

Ex vivo modelling systems for cardiovascular research are becoming increasingly important in reducing lab animal use and boosting personalized medicine approaches. Integrating multiple cell types in complex setups adds a higher level of significance to the models, simulating the intricate intercellular communication of the microenvironment in vivo. Cardiac fibrosis represents a key pathogenetic step in multiple cardiovascular diseases, such as ischemic and diabetic cardiomyopathies. Indeed, allowing inter-cellular interactions between cardiac stromal cells, endothelial cells, cardiomyocytes, and/or immune cells in dedicated systems could make ex vivo models of cardiac fibrosis even more relevant. Moreover, culture systems with 3D architectures further enrich the physiological significance of such in vitro models. In this review, we provide a summary of the multicellular 3D models for the study of cardiac fibrosis described in the literature, such as spontaneous microtissues, bioprinted constructs, engineered tissues, and organs-on-chip, discussing their advantages and limitations. Important discoveries on the physiopathology of cardiac fibrosis, as well as the screening of novel potential therapeutic molecules, have been reported thanks to these systems. Future developments will certainly increase their translational impact for understanding and modulating mechanisms of cardiac fibrosis even further.


Asunto(s)
Células Endoteliales , Ingeniería de Tejidos , Animales , Comunicación Celular , Fibrosis , Miocitos Cardíacos/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114386

RESUMEN

Cardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine. Our aim was to compare the effects of human decellularized native ECM from normal (dECM-NH) or failing hearts (dECM-PH) on human CPCs. CPCs were cultured on dECM sections and characterized for gene expression, immunofluorescence, and paracrine profiles. When cultured on dECM-NH, CPCs significantly upregulated cardiac commitment markers (CX43, NKX2.5), cardioprotective cytokines (bFGF, HGF), and the angiogenesis mediator, NO. When seeded on dECM-PH, instead, CPCs upregulated pro-remodeling cytokines (IGF-2, PDGF-AA, TGF-ß) and the oxidative stress molecule H2O2. Interestingly, culture on dECM-PH was associated with impaired paracrine support to angiogenesis, and increased expression of the vascular endothelial growth factor (VEGF)-sequestering decoy isoform of the KDR/VEGFR2 receptor. Our results suggest that resident CPCs exposed to the pathological microenvironment of remodeling ECM partially lose their paracrine angiogenic properties and release more pro-fibrotic cytokines. These observations shed novel insights on the crosstalk between ECM and stromal CPCs, suggesting also a cautious use of non-healthy decellularized myocardium for cardiac tissue engineering approaches.


Asunto(s)
Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/patología , Células Madre Mesenquimatosas/citología , Adulto , Anciano , Animales , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/genética , Femenino , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad
5.
Adv Exp Med Biol ; 1000: 85-93, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29098617

RESUMEN

Exercise represents an important lifestyle factor in all human ages when felt in harmony with other psycho-physical and environmental variables that affect individual life (e. g. quality of interest, affections, environment, diet and food). Consequently, in addition to the training level, the amount, intensity and modality of exercise (ana-/aerobic, isometric/isotonic), need to be personalized, considering the underlying diseases, which may benefit from it or worsening.Greek mythology gives us good examples of the exercise concept's evolution.From Discus-thrower to Spear-carrier the idea of physical activity is more effectively expressed. The Myron Discobolus displays the enduring pattern of athletic energy translated into the dynamic force given by the exercise. In Doryphoros instead, the physical activity is oriented to the achievement of the required psyco-physical harmony, who's the concept is aimed of being expressed by the sculpture.As outlined below, even in the field of arrhythmia, scientific evidence as well as clinical experience, supports the same concept: physical activity may be important while safely managed and personalized.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/rehabilitación , Terapia por Ejercicio/métodos , Ejercicio Físico/fisiología , Arritmias Cardíacas/psicología , Ejercicio Físico/psicología , Antigua Grecia , Historia Antigua , Humanos , Mitología , Aptitud Física/historia , Aptitud Física/fisiología , Medicina de Precisión/métodos , Calidad de Vida/psicología
6.
Biochim Biophys Acta ; 1853(5): 1046-59, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25667085

RESUMEN

Clinical and experimental biomedical studies have shown Type 2 diabetes mellitus (T2DM) to be a risk factor for the development of Alzheimer's disease (AD). This study demonstrates the effect of metformin, a therapeutic biguanide administered for T2DM therapy, on ß-amyloid precursor protein (APP) metabolism in in vitro, ex vivo and in vivo models. Furthermore, the protective role of insulin against metformin is also demonstrated. In LAN5 neuroblastoma cells, metformin increases APP and presenilin levels, proteins involved in AD. Overexpression of APP and presenilin 1 (Pres 1) increases APP cleavage and intracellular accumulation of ß-amyloid peptide (Aß), which, in turn, promotes aggregation of Aß. In the experimental conditions utilized the drug causes oxidative stress, mitochondrial damage, decrease of Hexokinase-II levels and cytochrome C release, all of which lead to cell death. Several changes in oxidative stress-related genes following metformin treatment were detected by PCR arrays specific for the oxidative stress pathway. These effects of metformin were found to be antagonized by the addition of insulin, which reduced Aß levels, oxidative stress, mitochondrial dysfunction and cell death. Similarly, antioxidant molecules, such as ferulic acid and curcumin, are able to revert metformin's effect. Comparable results were obtained using peripheral blood mononuclear cells. Finally, the involvement of NF-κB transcription factor in regulating APP and Pres 1 expression was investigated. Upon metformin treatment, NF-κB is activated and translocates from the cytoplasm to the nucleus, where it induces increased APP and Pres 1 transcription. The use of Bay11-7085 inhibitor suppressed the effect of metformin on APP and Pres 1 expression.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Insulina/farmacología , Metformina/farmacología , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Adenilato Quinasa/metabolismo , Adulto , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antioxidantes/farmacología , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citoprotección/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Presenilina-1/metabolismo , Transporte de Proteínas/efectos de los fármacos
7.
J Cell Mol Med ; 18(4): 624-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24444305

RESUMEN

Cardiac progenitor cells (CPCs) isolated as cardiospheres (CSs) and CS-derived cells (CDCs) are a promising tool for cardiac cell therapy in heart failure patients, having CDCs already been used in a phase I/II clinical trial. Culture standardization according to Good Manufacturing Practices (GMPs) is a mandatory step for clinical translation. One of the main issues raised is the use of xenogenic additives (e.g. FBS, foetal bovine serum) in cell culture media, which carries the risk of contamination with infectious viral/prion agents, and the possible induction of immunizing effects in the final recipient. In this study, B27 supplement and sera requirements to comply with European GMPs were investigated in CSs and CDCs cultures, in terms of process yield/efficiency and final cell product gene expression levels, as well as phenotype. B27- free CS cultures produced a significantly reduced yield and a 10-fold drop in c-kit expression levels versus B27+ media. Moreover, autologous human serum (aHS) and two different commercially available GMP AB HSs were compared with standard research-grade FBS. CPCs from all HSs explants had reduced growth rate, assumed a senescent-like morphology with time in culture, and/or displayed a significant shift towards the endothelial phenotype. Among three different GMP gamma-irradiated FBSs (giFBSs) tested, two provided unsatisfactory cell yields, while one performed optimally, in terms of CPCs yield/phenotype. In conclusion, the use of HSs for the isolation and expansion of CSs/CDCs has to be excluded because of altered proliferation and/or commitment, while media supplemented with B27 and the selected giFBS allows successful EU GMP-complying CPCs culture.


Asunto(s)
Técnicas de Cultivo de Célula , Medios de Cultivo/química , Suero/química , Células Madre/citología , Animales , Bovinos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-kit/biosíntesis , Células Madre/efectos de los fármacos
8.
Biochim Biophys Acta ; 1830(2): 2459-69, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22921810

RESUMEN

BACKGROUND: Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. SCOPE OF REVIEW: In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. MAJOR CONCLUSIONS: Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. GENERAL SIGNIFICANCE: Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells.


Asunto(s)
Miocardio/citología , Células Madre/citología , Humanos
9.
Foods ; 13(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275706

RESUMEN

In this study, we investigate the role of microwave cooking in reducing mycotoxin contamination in plant-based food matrices, with a focus on veggie burgers (purchased and home-made) and their ingredients (soybean, potatoes, zucchini, carrots). Two different conditions were studied (Max-Min) that were 800 W for 60 s and 800 W for 90 s, respectively. The degradation patterns of aflatoxins (AFB1, AFB2, AFG1, AFG2), fumonisins (FB1, FB2, FB3), trichothecenes (T2, HT2, ZEA), and ochratoxin A (OTA) were studied. The extraction procedures were conducted with the QuEChERS extraction, and the analyses were conducted with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Principal component analysis (PCA) showed that degradation under microwave cooking varies considerably across different food matrices and cooking conditions. This study provides valuable insights into the degradation of mycotoxins during microwave cooking and underscores the need for more research in this area to ensure food safety.

10.
Circ Res ; 106(5): 971-80, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20110532

RESUMEN

RATIONALE: Multiple biological mechanisms contribute to the efficacy of cardiac cell therapy. Most prominent among these are direct heart muscle and blood vessel regeneration from transplanted cells, as opposed to paracrine enhancement of tissue preservation and/or recruitment of endogenous repair. OBJECTIVE: Human cardiac progenitor cells, cultured as cardiospheres (CSps) or as CSp-derived cells (CDCs), have been shown to be capable of direct cardiac regeneration in vivo. Here we characterized paracrine effects in CDC transplantation and investigated their relative importance versus direct differentiation of surviving transplanted cells. METHODS AND RESULTS: In vitro, many growth factors were found in media conditioned by human adult CSps and CDCs; CDC-conditioned media exerted antiapoptotic effects on neonatal rat ventricular myocytes, and proangiogenic effects on human umbilical vein endothelial cells. In vivo, human CDCs secreted vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1 when transplanted into the same SCID mouse model of acute myocardial infarction where they were previously shown to improve function and to produce tissue regeneration. Injection of CDCs in the peri-infarct zone increased the expression of Akt, decreased apoptotic rate and caspase 3 level, and increased capillary density, indicating overall higher tissue resilience. Based on the number of human-specific cells relative to overall increases in capillary density and myocardial viability, direct differentiation quantitatively accounted for 20% to 50% of the observed effects. CONCLUSIONS: Together with their spontaneous commitment to cardiac and angiogenic differentiation, transplanted CDCs serve as "role models," recruiting endogenous regeneration and improving tissue resistance to ischemic stress. The contribution of the role model effect rivals or exceeds that of direct regeneration.


Asunto(s)
Células Endoteliales/trasplante , Infarto del Miocardio/cirugía , Miocitos Cardíacos/trasplante , Comunicación Paracrina , Regeneración , Trasplante de Células Madre , Animales , Animales Recién Nacidos , Apoptosis , Caspasa 3/metabolismo , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones SCID , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Análisis por Matrices de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Esferoides Celulares , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Bioengineering (Basel) ; 9(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36354532

RESUMEN

Nano- or microdevices, enabling simultaneous, long-term, multisite, cellular recording and stimulation from many excitable cells, are expected to make a strategic turn in basic and applied cardiology (particularly tissue engineering) and neuroscience. We propose an innovative approach aiming to elicit bioelectrical information from the cell membrane using an integrated circuit (IC) bearing a coating of nanowires on the chip surface. Nanowires grow directly on the backend of the ICs, thus allowing on-site amplification of bioelectric signals with uniform and controlled morphology and growth of the NWs on templates. To implement this technology, we evaluated the biocompatibility of silicon and zinc oxide nanowires (NWs), used as a seeding substrate for cells in culture, on two different primary cell lines. Human cardiac stromal cells were used to evaluate the effects of ZnO NWs of different lengths on cell behavior, morphology and growth, while BV-2 microglial-like cells and GH4-C1 neuroendocrine-like cell lines were used to evaluate cell membrane-NW interaction and contact when cultured on Si NWs. As the optimization of the contact between integrated microelectronics circuits and cellular membranes represents a long-standing issue, our technological approach may lay the basis for a new era of devices exploiting the microelectronics' sensitivity and "smartness" to both improve investigation of biological systems and to develop suitable NW-based systems available for tissue engineering and regenerative medicine.

12.
Genes (Basel) ; 13(12)2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36553601

RESUMEN

BACKGROUND: Aortic root dilation (ARD) has been described in 22q11.2DS, even without congenital heart disease (CHD). However, the clinical implications and longitudinal course are unclear. In this study, we evaluated aortic root (AR) dimensions in 22q112.DS adolescents/adults without major intracardiac CHDs, analyzed the progression over time and investigated correlations with extracardiac comorbidities. METHODS: AR dimensions were evaluated in 74 patients, measuring the sinus of Valsalva (VS) and proximal ascending aorta (AA), using Z-score to define mild, moderate and severe degrees. Changes in AR dimensions during longitudinal echocardiographic follow-up were investigated. Phenotypic characteristics have been collected. RESULTS: Twenty-four patients (32.4%) showed ARD in terms of VS Z-score (2.43; IQR 2.08-3.01), eight (33.3%) of a moderate/severe degree. Thirteen (54.2%) had concomitant AAD (Z-score 2.34; IQR 1.60-2.85). The risk of ARD was significantly directly related to skeletal/connective tissue disorders (OR 12.82, 95% CI 1.43-115.31; p = 0.023) and inversely related to BMI (OR 0.86, 95% CI 0.77-0.97; p = 0.011). A significant increase in AR diameter's absolute value (p = 0.001) over time has been detected. CONCLUSION: Isolated ARD is common in 22q11.2DS. Although some clinical risk factors have been identified, pathogenetic mechanisms and risk of complications are undefined. Regular cardiac evaluations should be part of the 22q11.2DS follow-up, and also in non-CHDs patients, to improve long-term outcome.


Asunto(s)
Síndrome de DiGeorge , Adulto , Adolescente , Humanos , Síndrome de DiGeorge/complicaciones , Aorta Torácica , Dilatación , Aorta/diagnóstico por imagen , Aorta/patología , Factores de Riesgo
13.
J Cell Mol Med ; 15(1): 63-71, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19912439

RESUMEN

Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit(+) CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit(+) CSCs.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Cardiopatías/cirugía , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/trasplante , Células Madre/fisiología , Animales , Animales Recién Nacidos , Western Blotting , Células de la Médula Ósea/metabolismo , Femenino , Cardiopatías/patología , Ratones , Ratones Transgénicos , ARN Mensajero/genética , Regeneración , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Am J Physiol Heart Circ Physiol ; 300(6): H2238-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21335465

RESUMEN

The methods currently utilized to track stem cells by cardiac MRI are affected by important limitations, and new solutions are needed. We tested human ferritin heavy chain (hFTH) as a reporter gene for in vivo tracking of stem cells by cardiac MRI. Swine cardiac stem/progenitor cells were transduced with a lentiviral vector to overexpress hFTH and cultured to obtain cardiospheres (Cs). Myocardial infarction was induced in rats, and, after 45 min, the animals were subjected to intramyocardial injection of ∼200 hFTH-Cs or nontransduced Cs or saline solution in the border zone. By employing clinical standard 1.5-Tesla MRI scanner and a multiecho T2* gradient echo sequence, we localized iron-accumulating tissue only in hearts treated with hFTH-Cs. This signal was detectable at 1 wk after infarction, and its size did not change significantly after 4 wk (6.33 ± 3.05 vs. 4.41 ± 4.38 mm(2)). Cs transduction did not affect their cardioreparative potential, as indicated by the significantly better preserved left ventricular global and regional function and the 36% reduction in infarct size in both groups that received Cs compared with control infarcts. Prussian blue staining confirmed the presence of differentiated, iron-accumulating cells containing mitochondria of porcine origin. Cs-derived cells displayed CD31, α-smooth muscle, and α-sarcomeric actin antigens, indicating that the differentiation into endothelial, smooth muscle and cardiac muscle lineage was not affected by ferritin overexpression. In conclusion, hFTH can be used as a MRI reporter gene to track dividing/differentiating stem cells in the beating heart, while simultaneously monitoring cardiac morpho-functional changes.


Asunto(s)
Apoferritinas/genética , Genes Reporteros/genética , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/cirugía , Miocardio/patología , Trasplante de Células Madre/métodos , Células Madre/citología , Actinas/metabolismo , Animales , Apoferritinas/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular , Supervivencia Celular/fisiología , Células Cultivadas , Humanos , Lentivirus/genética , Masculino , Modelos Animales , Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Ratas Wistar , Células Madre/metabolismo , Porcinos , Transducción Genética
15.
J Cell Mol Med ; 14(5): 1071-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20465579

RESUMEN

Tissue engineering is an increasingly expanding area of research in the cardiovascular field that involves engineering, chemistry, biology and medicine. Cardiac tissue engineering (CTE) aims to regenerate myocardial damage by combining cells, matrix, biological active molecules and physiological stimuli. The rationale behind CTE applications is that in order to regenerate the ventricular wall after a myocardial infarction it is necessary to combine procedures that regenerate both cardiomyocytes and the extracellular matrix. The application of (stem) cells together with a matrix could represent an environment protected from the inflammatory and pro-apoptotic signals, a stemness/survival reservoir slowly releasing cells and factors promoting tissue regeneration and angiogenesis. This review will focus on the applications and advantages that CTE application could offer compared to conventional cell therapy.


Asunto(s)
Miocardio/citología , Miocardio/metabolismo , Regeneración/fisiología , Esferoides Celulares/citología , Ingeniería de Tejidos/métodos , Humanos , Esferoides Celulares/metabolismo , Trasplante de Células Madre
16.
Front Cell Dev Biol ; 8: 559032, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015056

RESUMEN

The increased knowledge in cell signals and stem cell differentiation, together with the development of new technologies, such as 3D bioprinting, has made the generation of artificial tissues more feasible for in vitro studies and in vivo applications. In the human body, cell fate, function, and survival are determined by the microenvironment, a rich and complex network composed of extracellular matrix (ECM), different cell types, and soluble factors. They all interconnect and communicate, receiving and sending signals, modulating and responding to cues. In the cardiovascular field, the culture of stem cells in vitro and their differentiation into cardiac phenotypes is well established, although differentiated cardiomyocytes often lack the functional maturation and structural organization typical of the adult myocardium. The recreation of an artificial microenvironment as similar as possible to the native tissue, though, has been shown to partly overcome these limitations, and can be obtained through the proper combination of ECM molecules, different cell types, bioavailability of growth factors (GFs), as well as appropriate mechanical and geometrical stimuli. This review will focus on the role of the ECM in the regulation of cardiac differentiation, will provide new insights on the role of supporting cells in the generation of 3D artificial tissues, and will also present a selection of the latest approaches to recreate a cardiac microenvironment in vitro through 3D bioprinting approaches.

17.
Front Cell Dev Biol ; 8: 334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671058

RESUMEN

During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.

19.
Sci Rep ; 9(1): 6644, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040327

RESUMEN

The 'cardiosphere' is a 3D cluster of cardiac progenitor cells recapitulating a stem cell niche-like microenvironment with a potential for disease and regeneration modelling of the failing human myocardium. In this multicellular 3D context, it is extremely important to decrypt the spatial distribution of cell markers for dissecting the evolution of cellular phenotypes by direct quantification of fluorescent signals in confocal microscopy. In this study, we present a fully automated method, named CARE ('CARdiosphere Evaluation'), for the segmentation of membranes and cell nuclei in human-derived cardiospheres. The proposed method is tested on twenty 3D-stacks of cardiospheres, for a total of 1160 images. Automatic results are compared with manual annotations and two open-source software designed for fluorescence microscopy. CARE performance was excellent in cardiospheres membrane segmentation and, in cell nuclei detection, the algorithm achieved the same performance as two expert operators. To the best of our knowledge, CARE is the first fully automated algorithm for segmentation inside in vitro 3D cell spheroids, including cardiospheres. The proposed approach will provide, in the future, automated quantitative analysis of markers distribution within the cardiac niche-like environment, enabling predictive associations between cell mechanical stresses and dynamic phenotypic changes.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Microscopía Fluorescente , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Técnicas de Cultivo de Célula , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Programas Informáticos , Esferoides Celulares
20.
Circulation ; 115(7): 896-908, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17283259

RESUMEN

BACKGROUND: Ex vivo expansion of resident cardiac stem cells, followed by delivery to the heart, may favor regeneration and functional improvement. METHODS AND RESULTS: Percutaneous endomyocardial biopsy specimens grown in primary culture developed multicellular clusters known as cardiospheres, which were plated to yield cardiosphere-derived cells (CDCs). CDCs from human biopsy specimens and from comparable porcine samples were examined in vitro for biophysical and cytochemical evidence of cardiogenic differentiation. In addition, human CDCs were injected into the border zone of acute myocardial infarcts in immunodeficient mice. Biopsy specimens from 69 of 70 patients yielded cardiosphere-forming cells. Cardiospheres and CDCs expressed antigenic characteristics of stem cells at each stage of processing, as well as proteins vital for cardiac contractile and electrical function. Human and porcine CDCs cocultured with neonatal rat ventricular myocytes exhibited biophysical signatures characteristic of myocytes, including calcium transients synchronous with those of neighboring myocytes. Human CDCs injected into the border zone of myocardial infarcts engrafted and migrated into the infarct zone. After 20 days, the percentage of viable myocardium within the infarct zone was greater in the CDC-treated group than in the fibroblast-treated control group; likewise, left ventricular ejection fraction was higher in the CDC-treated group. CONCLUSIONS: A method is presented for the isolation of adult human stem cells from endomyocardial biopsy specimens. CDCs are cardiogenic in vitro; they promote cardiac regeneration and improve heart function in a mouse infarct model, which provides motivation for further development for therapeutic applications in patients.


Asunto(s)
Células Madre Adultas/fisiología , Infarto del Miocardio/terapia , Miocardio/patología , Miocitos Cardíacos/fisiología , Regeneración , Animales , Biopsia , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Miocardio/citología , Ratas , Trasplante de Células Madre , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA