Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(6): 062701, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822042

RESUMEN

The kilonova emission observed following the binary neutron star merger event GW170817 provided the first direct evidence for the synthesis of heavy nuclei through the rapid neutron capture process (r process). The late-time transition in the spectral energy distribution to near-infrared wavelengths was interpreted as indicating the production of lanthanide nuclei, with atomic mass number A≳140. However, compelling evidence for the presence of even heavier third-peak (A≈195) r-process elements (e.g., gold, platinum) or translead nuclei remains elusive. At early times (∼days) most of the r-process heating arises from a large statistical ensemble of ß decays, which thermalize efficiently while the ejecta is still dense, generating a heating rate that is reasonably approximated by a single power law. However, at later times of weeks to months, the decay energy input can also possibly be dominated by a discrete number of α decays, ^{223}Ra (half-life t_{1/2}=11.43 d), ^{225}Ac (t_{1/2}=10.0 d, following the ß decay of ^{225}Ra with t_{1/2}=14.9 d), and the fissioning isotope ^{254}Cf (t_{1/2}=60.5 d), which liberate more energy per decay and thermalize with greater efficiency than ß-decay products. Late-time nebular observations of kilonovae which constrain the radioactive power provide the potential to identify signatures of these individual isotopes, thus confirming the production of heavy nuclei. In order to constrain the bolometric light to the required accuracy, multiepoch and wideband observations are required with sensitive instruments like the James Webb Space Telescope. In addition, by comparing the nuclear heating rate obtained with an abundance distribution that follows the solar r abundance pattern, to the bolometric lightcurve of AT2017gfo, we find that the yet-uncertain r abundance of ^{72}Ge plays a decisive role in powering the lightcurve, if one assumes that GW170817 has produced a full range of the solar r abundances down to mass number A∼70.

2.
Nature ; 465(7296): 322-5, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20485429

RESUMEN

Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

3.
Nat Commun ; 8(1): 831, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018247

RESUMEN

The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

4.
Astrophys J ; 836(1)2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28966348

RESUMEN

We present the detection of persistent soft X-ray radiation with Lx ~ 1041-1042 erg s-1 at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical-UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event.

5.
Science ; 351(6268): 62-5, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26612833

RESUMEN

The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA