Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 131(11): 1195-1205, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29295845

RESUMEN

Age-associated changes in hematopoietic stem and progenitor cells (HSPCs) have been carefully documented in mouse models but poorly characterized in primates and humans. To investigate clinically relevant aspects of hematopoietic aging, we compared the clonal output of thousands of genetically barcoded HSPCs in aged vs young macaques after autologous transplantation. Aged macaques showed delayed emergence of output from multipotent (MP) clones, with persistence of lineage-biased clones for many months after engraftment. In contrast to murine aging models reporting persistence of myeloid-biased HSPCs, aged macaques demonstrated persistent output from both B-cell and myeloid-biased clones. Clonal expansions of MP, myeloid-biased, and B-biased clones occurred in aged macaques, providing a potential model for human clonal hematopoiesis of indeterminate prognosis. These results suggest that long-term MP HSPC output is impaired in aged macaques, resulting in differences in the kinetics and lineage reconstitution patterns between young and aged primates in an autologous transplantation setting.


Asunto(s)
Envejecimiento/fisiología , Rastreo Celular , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Animales , Autoinjertos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Macaca
2.
Haematologica ; 105(7): 1813-1824, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31582555

RESUMEN

The classical model of hematopoietic hierarchies is being reconsidered on the basis of data from in vitro assays and single cell expression profiling. Recent experiments suggested that the erythroid lineage might differentiate directly from multipotent hematopoietic stem cells / progenitors or from a highly biased subpopulation of stem cells, rather than transiting through common myeloid progenitors or megakaryocyte-erythrocyte progenitors. We genetically barcoded autologous rhesus macaque stem and progenitor cells, allowing quantitative tracking of the in vivo clonal output of thousands of individual cells over time following transplantation. CD34+ cells were lentiviral-transduced with a high diversity barcode library, with the barcode in an expressed region of the provirus, allowing barcode retrieval from DNA or RNA, with each barcode representing an individual stem or progenitor cell clone. Barcode profiles from bone marrow CD45-CD71+ maturing nucleated red blood cells were compared with other lineages purified from the same bone marrow sample. There was very high correlation of barcode contributions between marrow nucleated red blood cells and other lineages, with the highest correlation between nucleated red blood cells and myeloid lineages, whether at earlier or later time points post transplantation, without obvious clonal contributions from highly erythroid-biased or restricted clones. A similar profile occurred even under stressors such as aging or erythropoietin stimulation. RNA barcode analysis on circulating mature red blood cells followed over long time periods demonstrated stable erythroid clonal contributions. Overall, in this nonhuman primate model with great relevance to human hematopoiesis, we documented continuous production of erythroid cells from multipotent, non-biased hematopoietic stem cell clones at steady-state or under stress.


Asunto(s)
Eritropoyesis , Células Madre Hematopoyéticas , Animales , Diferenciación Celular , Células Cultivadas , Hematopoyesis , Macaca mulatta , Células Madre Multipotentes
3.
Mol Ther ; 27(6): 1074-1086, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31023523

RESUMEN

Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/virología , Lentivirus/genética , Transducción Genética , Animales , Antígenos CD34/metabolismo , Células Clonales , Terapia Genética/efectos adversos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Sustancias Luminiscentes/metabolismo , Macaca mulatta , Mutagénesis Insercional/genética , Regiones Promotoras Genéticas , Empalme de Proteína/genética , Secuencias Repetidas Terminales/genética , Trasplante Autólogo
4.
Blood ; 126(24): 2632-41, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26492933

RESUMEN

Ionizing irradiation is used routinely to induce myeloablation and immunosuppression. However, it has not been possible to evaluate the extent of ablation without invasive biopsy. For lymphoid recovery, peripheral blood (PB) lymphocytes (PBLs) have been used for analysis, but they represent <2% of cells in lymphoid tissues (LTs). Using a combination of single-photon emission computed tomography imaging and a radiotracer ((99m)Tc-labeled rhesus immunoglobulin G1 anti-CD4R1 (Fab')2), we sequentially imaged CD4(+) cell recovery in rhesus macaques following total body irradiation (TBI) and reinfusion of vector-transduced, autologous CD34(+) cells. Our results present for the first time a sequential, real-time, noninvasive method to evaluate CD4(+) cell recovery. Importantly, despite myeloablation of circulating leukocytes following TBI, total depletion of CD4(+) lymphocytes in LTs such as the spleen is not achieved. The impact of TBI on LTs and PBLs is discordant, in which as few as 32.4% of CD4(+) cells were depleted from the spleen. In addition, despite full lymphocyte recovery in the spleen and PB, lymph nodes have suboptimal recovery. This highlights concerns about residual disease, endogenous contributions to recovery, and residual LT damage following ionizing irradiation. Such methodologies also have direct application to immunosuppressive therapy and other immunosuppressive disorders, such as those associated with viral monitoring.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Tejido Linfoide/fisiología , Tomografía Computarizada de Emisión de Fotón Único , Acondicionamiento Pretrasplante , Animales , Médula Ósea/efectos de la radiación , Antígenos CD4/genética , Recuento de Linfocito CD4 , Sistemas de Computación , Genes Reporteros , Genes Sintéticos , Vectores Genéticos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Inmunoglobulina G/genética , Lentivirus/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/efectos de la radiación , Tejido Linfoide/diagnóstico por imagen , Tejido Linfoide/efectos de la radiación , Macaca mulatta , Imagen Multimodal , Especificidad de Órganos , Quimera por Radiación , Bazo/inmunología , Bazo/efectos de la radiación , Tomografía Computarizada por Rayos X , Transducción Genética , Trasplante Autólogo , Irradiación Corporal Total
5.
Stem Cells ; 33(1): 91-100, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25330775

RESUMEN

The high risk of insertional oncogenesis reported in clinical trials using integrating retroviral vectors to genetically modify hematopoietic stem and progenitor cells (HSPCs) requires the development of safety strategies to minimize risks associated with novel cell and gene therapies. The ability to ablate genetically modified cells in vivo is desirable, should an abnormal clone emerge. Inclusion of "suicide genes" in vectors to facilitate targeted ablation of vector-containing abnormal clones in vivo is one potential safety approach. We tested whether the inclusion of the "inducible Caspase-9" (iCasp9) suicide gene in a gamma-retroviral vector facilitated efficient elimination of vector-containing HSPCs and their hematopoietic progeny in vivo long-term, in an autologous non-human primate transplantation model. Following stable engraftment of iCasp9 expressing hematopoietic cells in rhesus macaques, administration of AP1903, a chemical inducer of dimerization able to activate iCasp9, specifically eliminated vector-containing cells in all hematopoietic lineages long-term, suggesting activity at the HSPC level. Between 75% and 94% of vector-containing cells were eliminated by well-tolerated AP1903 dosing, but lack of complete ablation was linked to lower iCasp9 expression in residual cells. Further investigation of resistance mechanisms demonstrated upregulation of Bcl-2 in hematopoietic cell lines transduced with the vector and resistant to AP1903 ablation. These results demonstrate both the potential and the limitations of safety approaches using iCasp9 to HSPC-targeted gene therapy settings, in a model with great relevance to clinical development.


Asunto(s)
Caspasa 9/genética , Genes Transgénicos Suicidas , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/citología , Animales , Apoptosis/fisiología , Caspasa 9/biosíntesis , Terapia Genética , Vectores Genéticos , Células Madre Hematopoyéticas/enzimología , Macaca mulatta
6.
Blood ; 118(25): 6580-90, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21989987

RESUMEN

In this study, we used the rhesus macaque model to determine the impact that AMD3100 has on lymphocyte mobilization, both alone and in combination with G-CSF. Our results indicate that, unlike G-CSF, AMD3100 substantially mobilizes both B and T lymphocytes into the peripheral blood. This led to significant increases in the peripheral blood content of both effector and regulatory T-cell populations, which translated into greater accumulation of these cells in the resulting leukapheresis products. Notably, CD4(+)/CD25(high)/CD127(low)/FoxP3(+) Tregs were efficiently mobilized with AMD3100-containing regimens, with as much as a 4.0-fold enrichment in the leukapheresis product compared with G-CSF alone. CD8(+) T cells were mobilized to a greater extent than CD4(+) T cells, with accumulation of 3.7 ± 0.4-fold more total CD8+ T cells and 6.2 ± 0.4-fold more CD8(+) effector memory T cells in the leukapheresis product compared with G-CSF alone. Given that effector memory T-cell subpopulations may mediate less GVHD compared with other effector T-cell populations and that Tregs are protective against GVHD, our results indicate that AMD3100 may mobilize a GVHD-protective T-cell repertoire, which would be of benefit in allogeneic hematopoietic stem cell transplantation.


Asunto(s)
Movilización de Célula Madre Hematopoyética/métodos , Compuestos Heterocíclicos/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Bencilaminas , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Ciclamas , Sinergismo Farmacológico , Citometría de Flujo , Factores de Transcripción Forkhead/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Leucaféresis/métodos , Recuento de Linfocitos , Macaca mulatta , Receptores CXCR4/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo
7.
Mol Ther ; 20(10): 1932-43, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22910293

RESUMEN

Despite the genotoxic complications encountered in clinical gene therapy trials for primary immunodeficiency diseases targeting hematopoietic cells with integrating vectors; this strategy holds promise for the cure of several monogenic blood, metabolic and neurodegenerative diseases. In this study, we asked whether the inclusion of a suicide gene in a standard retrovirus vector would allow elimination of vector-containing stem and progenitor cells and their progeny in vivo following transplantation, using our rhesus macaque transplantation model. Following stable engraftment with autologous CD34(+) cells transduced with a retrovirus vector encoding a highly sensitive modified Herpes simplex virus thymidine kinase SR39, the administration of the antiviral prodrug ganciclovir (GCV) was effective in completely eliminating vector-containing cells in all hematopoietic lineages in vivo. The sustained absence of vector-containing cells over time, without additional GCV administration, suggests that the ablation of TkSR39 GCV-sensitive cells occurred in the most primitive hematopoietic long-term repopulating stem or progenitor cell compartment. These results are a proof-of-concept that the inclusion of a suicide gene in integrating vectors, in addition to a therapeutic gene, can provide a mechanism for later elimination of vector-containing cells, thereby increasing the safety of gene transfer.


Asunto(s)
Ganciclovir/uso terapéutico , Genes Transgénicos Suicidas , Vectores Genéticos , Hematopoyesis/genética , Timidina Quinasa/genética , Animales , Antivirales/uso terapéutico , Replicación del ADN , Terapia Genética/métodos , Células Madre Hematopoyéticas/citología , Macaca mulatta , Retroviridae/genética , Transducción Genética
8.
Mol Ther ; 20(7): 1410-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22565846

RESUMEN

Liver gene transfer for hemophilia B has shown very promising results in recent clinical studies. A potential complication of gene-based treatments for hemophilia and other inherited disorders, however, is the development of neutralizing antibodies (NAb) against the therapeutic transgene. The risk of developing NAb to the coagulation factor IX (F.IX) transgene product following adeno-associated virus (AAV)-mediated hepatic gene transfer for hemophilia is small but not absent, as formation of inhibitory antibodies to F.IX is observed in experimental animals following liver gene transfer. Thus, strategies to modulate antitransgene NAb responses are needed. Here, we used the anti-B cell monoclonal antibody rituximab (rtx) in combination with cyclosporine A (CsA) to eradicate anti-human F.IX NAb in rhesus macaques previously injected intravenously with AAV8 vectors expressing human F.IX. A short course of immunosuppression (IS) resulted in eradication of anti-F.IX NAb with restoration of plasma F.IX transgene product detection. In one animal, following IS anti-AAV6 antibodies also dropped below detection, allowing for successful AAV vector readministration and resulting in high levels (60% or normal) of F.IX transgene product in plasma. Though the number of animals is small, this study supports for the safety and efficacy of B cell-targeting therapies to eradicate NAb developed following AAV-mediated gene transfer.


Asunto(s)
Factor IX/inmunología , Técnicas de Transferencia de Gen , Terapia Genética , Hemofilia B/terapia , Inmunidad Humoral/efectos de los fármacos , Animales , Anticuerpos Monoclonales de Origen Murino/farmacología , Anticuerpos Neutralizantes/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Ciclosporinas/farmacología , Dependovirus/genética , Factor IX/genética , Hemofilia B/genética , Factores Inmunológicos/farmacología , Inmunosupresores/farmacología , Macaca mulatta , Rituximab , Transgenes
9.
Mol Ther ; 20(10): 1882-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22871664

RESUMEN

Human immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34(+) cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34(+) cells were transduced with standard SIV vectors and the other half with χHIV vectors. As compared with SIV vectors, χHIV vectors achieved higher vector integration, and the transgene expression rates were two- to threefold higher in granulocytes and red blood cells and equivalent in lymphocytes and platelets for 2 years. A recipient of χHIV vector-only transduced cells reached up to 40% of transgene expression rates in granulocytes and lymphocytes and 20% in red blood cells. Similar to HIV1 and SIV vectors, χHIV vector frequently integrated into gene regions, especially into introns. In summary, our χHIV vector demonstrated efficient transduction for rhesus long-term repopulating cells, comparable with SIV vectors. This χHIV vector should allow preclinical testing of HIV1-based therapeutic vectors in large animal models.


Asunto(s)
Vectores Genéticos/genética , VIH-1/genética , Células Madre Hematopoyéticas , Transducción Genética , Animales , Antígenos CD34/metabolismo , Southern Blotting , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Trasplante de Células Madre Hematopoyéticas , Humanos , Macaca mulatta , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus de la Inmunodeficiencia de los Simios/genética , Transgenes
10.
Heliyon ; 9(9): e19435, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810095

RESUMEN

Selective T-cell depletion prior to cell or organ transplantation is considered a preconditioning regimen to induce tolerance and immunosuppression. An immunotoxin consisting of a recombinant anti-CD3 antibody conjugated with diphtheria toxin was used to eliminate T-cells. It showed significant T-cell depletion activity in the peripheral blood and lymph nodes in animal models used in previous studies. To date, a comprehensive evaluation of T-cell depletion and CD3 proliferation for all lymphoid tissues has not been conducted. Here, two rhesus macaques were administered A-dmDT390-SCFBdb (CD3-IT) intravenously at 25 µg/kg twice daily for four days. Samples were collected one day prior to and four days post administration. Flow cytometry and immunofluorescence staining were used to evaluate treatment efficiency accurately. Our preliminary results suggest that CD3-IT treatment may induce higher depletion of CD3 and CD4 T-cells in the lymph nodes and spleen, but is ineffective in the colon and thymus. The data showed a better elimination tendency of CD4 T-cells in the B-cell zone relative to the germinal center in the lymph nodes. Further, CD3-IT treatment may lead to a reduction in germinal center T follicular helper CD4 cells in the lymph nodes compared to healthy controls. The number of proliferating CD3 T-cell indicated that repopulation in different lymphoid tissues may occur four days post treatment. Our results provide insights into the differential efficacy of CD3-IT treatment and T-cell proliferation post treatment in different lymphoid tissues. Overall, CD3-IT treatment shows potential efficacy in depleting T-cells in the periphery, lymph nodes, and spleen, making it a viable preconditioning regimen for cell or organ transplantation. Our pilot study provides critical descriptive statistics and can contribute to the design of larger future studies.

11.
Blood ; 114(12): 2530-41, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19602709

RESUMEN

Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize peripheral blood stem cells by different mechanisms. A rhesus macaque model was used to compare plerixafor and G-CSF-mobilized CD34(+) cells. Three peripheral blood stem cell concentrates were collected from 3 macaques treated with G-CSF, plerixafor, or plerixafor plus G-CSF. CD34(+) cells were isolated by immunoselection and were analyzed by global gene and microRNA (miR) expression microarrays. Unsupervised hierarchical clustering of the gene expression data separated the CD34(+) cells into 3 groups based on mobilization regimen. Plerixafor-mobilized cells were enriched for B cells, T cells, and mast cell genes, and G-CSF-mobilized cells were enriched for neutrophils and mononuclear phagocyte genes. Genes up-regulated in plerixafor plus G-CSF-mobilized CD34(+) cells included many that were not up-regulated by either agent alone. Two hematopoietic progenitor cell miR, miR-10 and miR-126, and a dendritic cell miR, miR-155, were up-regulated in G-CSF-mobilized CD34(+) cells. A pre-B-cell acute lymphocytic leukemia miR, miR-143-3p, and a T-cell miR, miR-143-5p, were up-regulated in plerixafor plus G-CSF-mobilized cells. The composition of CD34(+) cells is dependent on the mobilization protocol. Plerixafor-mobilized CD34(+) cells include more B-, T-, and mast cell precursors, whereas G-CSF-mobilized cells have more neutrophil and mononuclear phagocyte precursors.


Asunto(s)
Antígenos CD34/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/farmacología , MicroARNs/genética , Animales , Fármacos Anti-VIH/farmacología , Bencilaminas , Biomarcadores/metabolismo , Ciclamas , Combinación de Medicamentos , Células Madre Hematopoyéticas/efectos de los fármacos , Macaca mulatta , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
World Neurosurg ; 149: e1007-e1016, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33476778

RESUMEN

OBJECTIVE: The choice of surgical technique in sight-threatening Grave orbitopathy remains controversial. Available data are mostly derived from mixed cohorts with multiple surgical indications and techniques. The authors assessed predictors for visual outcome after standardized pterional orbital decompression for dysthyroid optic neuropathy. METHODS: Retrospective analysis of 62 pterional orbital decompressions performed on 40 patients with dysthyroid optic neuropathy. RESULTS: Visual acuity improved by an average of 3.8 lines in eyes with preoperative visual impairment (95% confidence interval [CI]: 1.8-5.8 lines, P < 0.001) and remained stable in eyes without prior visual impairment (95% CI -1.3 to 1 line, P = 0.81). Proptosis was reduced by an average of 3.1 mm (95% CI 1.8-4.3 mm, P < 0.001). Higher degrees of proptosis were predictive of worse visual outcomes (P = 0.017). New-onset diplopia developed in 2 patients, while previous diplopia resolved after surgery in 6 patients. CONCLUSIONS: This cohort is the largest series of pterional orbit decompressions and the first to focus exclusively on dysthyroid neuropathy. Complication rates were low. Decompression surgery was highly effective at restoring and maintaining visual acuity in patients with dysthyroid optic neuropathy.


Asunto(s)
Descompresión Quirúrgica/métodos , Oftalmopatía de Graves/cirugía , Órbita/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Diplopía/etiología , Exoftalmia/etiología , Exoftalmia/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Estudios Retrospectivos , Resultado del Tratamiento , Visión Ocular , Agudeza Visual
13.
Mol Ther Methods Clin Dev ; 20: 703-715, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33738325

RESUMEN

Ex vivo hematopoietic stem and progenitor cell (HSPC) expansion platforms are under active development, designed to increase HSPC numbers and thus engraftment ability of allogeneic cord blood grafts or autologous HSPCs for gene therapies. Murine and in vitro models have not correlated well with clinical outcomes of HSPC expansion, emphasizing the need for relevant pre-clinical models. Our rhesus macaque HSPC competitive autologous transplantation model utilizing genetically barcoded HSPC allows direct analysis of the relative short and long-term engraftment ability of lentivirally transduced HSPCs, along with additional critical characteristics such as HSPC clonal diversity and lineage bias. We investigated the impact of ex vivo expansion of macaque HSPCs on the engineered endothelial cell line (E-HUVECs) platform regarding safety, engraftment of transduced and E-HUVEC-expanded HSPC over time compared to non-expanded HSPC for up to 51 months post-transplantation, and both clonal diversity and lineage distribution of output from each engrafted cell source. Short and long-term engraftment were comparable for E-HUVEC expanded and the non-expanded HSPCs in both animals, despite extensive proliferation of CD34+ cells during 8 days of ex vivo culture for the E-HUVEC HSPCs, and optimization of harvesting and infusion of HSPCs co-cultured on E-HUVEC in the second animal. Long-term hematopoietic output from both E-HUVEC expanded and unexpanded HSPCs was highly polyclonal and multilineage. Overall, the comparable HSPC kinetics of macaques to humans, the ability to study post-transplant clonal patterns, and simultaneous multi-arm comparisons of grafts without the complication of interpreting allogeneic effects makes our model ideal to test ex vivo HSPC expansion platforms, particularly for gene therapy applications.

14.
J Virol ; 83(19): 9854-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19625395

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) vectors transduce rhesus blood cells poorly due to a species-specific block by TRIM5alpha and APOBEC3G, which target HIV-1 capsid and viral infectivity factor (Vif), respectively. We sought to develop a lentiviral vector capable of transducing both human and rhesus blood cells by combining components of both HIV-1 and simian immunodeficiency virus (SIV), including SIV capsid (sCA) and SIV Vif. A chimeric HIV-1 vector including sCA (chiHIV) was superior to the conventional SIV in transducing a human blood cell line and superior to the conventional HIV-1 vector in transducing a rhesus blood cell line. Among human CD34(+) hematopoietic stem cells (HSCs), the chiHIV and HIV-1 vectors showed similar transduction efficiencies; in rhesus CD34(+) HSCs, the chiHIV vector yielded superior transduction rates. In in vivo competitive repopulation experiments with two rhesus macaques, the chiHIV vector demonstrated superior marking levels over the conventional HIV-1 vector in all blood lineages (first rhesus, 15 to 30% versus 1 to 5%; second rhesus, 7 to 15% versus 0.5 to 2%, respectively) 3 to 7 months postinfusion. In summary, we have developed an HIV-1-based lentiviral vector system that should allow comprehensive preclinical testing of HIV-1-based therapeutic vectors in the rhesus macaque model with eventual clinical application.


Asunto(s)
Vectores Genéticos/genética , VIH-1/metabolismo , Lentivirus/genética , Virus de la Inmunodeficiencia de los Simios/metabolismo , Animales , Antígenos CD34/biosíntesis , Cápside/metabolismo , Línea Celular , Eritrocitos/virología , Células Madre Hematopoyéticas/virología , Humanos , Macaca mulatta , Modelos Genéticos , Mutación , Transducción Genética
15.
J Hand Surg Am ; 35(4): 580-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20353859

RESUMEN

PURPOSE: To compare volar, dorsal, and custom splinting techniques in acute Doyle I mallet finger injuries. METHODS: We developed a radiographic lag measurement using the contralateral normal digit as an internal control for establishing the approximate preinjury maximal extension of the mallet finger. The difference in maximal distal interphalangeal joint extension between the injured and contralateral normal digit was defined as the radiographic lag difference. We randomized 87 subjects meeting the inclusion criteria to one of 3 splint types: volar padded aluminum splint, dorsal padded aluminum splint, and custom thermoplastic. Splints were continued for 6 weeks full-time. A total of 77 subjects were available for measurement of the primary outcome measure: radiographic lag difference at week 12. Secondary outcome measures were recorded at weeks 7 and 24. RESULTS: No lag difference was demonstrated at week 12 (p = .12), although a trend suggesting superiority (closest value to 0 difference) of the custom thermoplastic splint was observed. The mean radiographic lag differences were -16.2 degrees (95% confidence interval [CI], -21.3 degrees to -11.0 degrees ) for the dorsal padded aluminum splint, -13.6 degrees (95% CI, -18.0 degrees to -9.2 degrees ) for the volar padded aluminum splint, and -9.0 degrees (95% CI, -14.5 degrees to 3.4 degrees ) for the custom thermoplastic splint. Secondary between-group analyses showed no differences for radiographic or clinical lag, Michigan Hand Outcome Questionnaire scores, or complications. Secondary analyses of the whole cohort suggested that clinical measurement overestimates true lag, increased lag occurs after discontinuation of splinting, and clinically measured improvement in lag is noted at week 24. CONCLUSIONS: No lag difference was demonstrated between custom thermoplastic, dorsal padded aluminum splint, and volar padded aluminum splinting for Doyle I acute mallet fingers. Clinical measurement overestimates true lag in mallet injuries. Increased lag occurs after discontinuation of splinting. Increased age and complications correlate with worse radiographic lag.


Asunto(s)
Traumatismos de los Dedos/diagnóstico por imagen , Traumatismos de los Dedos/terapia , Férulas (Fijadores) , Traumatismos de los Tendones/diagnóstico por imagen , Traumatismos de los Tendones/terapia , Heridas no Penetrantes/diagnóstico por imagen , Heridas no Penetrantes/terapia , Adolescente , Adulto , Anciano , Aluminio , Análisis de Varianza , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plásticos , Estudios Prospectivos , Radiografía , Encuestas y Cuestionarios , Resultado del Tratamiento
16.
Blood Adv ; 4(24): 6148-6156, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33351110

RESUMEN

Intrabone (IB) injection of umbilical cord blood has been proposed as a potential mechanism to improve transplant engraftment and prevent graft failure. However, conventional IB techniques produce low retention of transplanted cells in the marrow. To overcome this barrier, we developed an optimized IB (OIB) injection method using low-volume, computer-controlled slow infusion that promotes cellular retention in the marrow. Here, we compare engraftment of CD34+ cells transplanted in a myeloablative rhesus macaque (RM) model using the OIB method compared with IV delivery. RM CD34+ cells obtained by apheresis were split equally for transduction with lentiviral vectors encoding either green fluorescent protein or yellow fluorescent protein reporters. Following conditioning, one marked autologous population of CD34+ cells was injected directly IB using the OIB method and the other was injected via slow IV push into the same animal (n = 3). Daily flow cytometry of blood quantified the proportion of engrafting cells deriving from each source. Marrow retention was examined using positron emission tomography/computed tomography imaging of 89Zirconium (89Zr)-oxine-labeled CD34+ cells. CD34+ cells injected via the OIB method were retained in the marrow and engrafted in all 3 animals. However, OIB-transplanted progenitor cells did not engraft any faster than those delivered IV and contributed significantly less to hematopoiesis than IV-delivered cells at all time points. Rigorous testing of our OIB delivery system in a competitive RM myeloablative transplant model showed no engraftment advantage over conventional IV infusion. Given the increased complexity and potential risks of IB vs IV approaches, our data do not support IB transplantation as a strategy to improve hematopoietic engraftment.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Antígenos CD34 , Macaca mulatta , Radioisótopos , Circonio
17.
Blood Adv ; 4(23): 5976-5987, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33284949

RESUMEN

Granulocytes from patients with chronic granulomatous disease (CGD) have dysfunctional phagocyte reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase that fails to generate sufficient antimicrobial reactive oxidative species. CGD patients with severe persistent fungal or bacterial infection who do not respond to antibiotic therapy may be given apheresis-derived allogeneic granulocyte transfusions from healthy volunteers to improve clearance of intractable infections. Allogeneic granulocyte donors are not HLA matched, so patients who receive the donor granulocyte products may develop anti-HLA alloimmunity. This not only precludes future use of allogeneic granulocytes in an alloimmunized CGD recipient, but increases the risk of graft failure of those recipients who go on to need an allogeneic bone marrow transplant. Here, we provide the first demonstration of efficient functional restoration of CGD patient apheresis granulocytes by messenger RNA (mRNA) electroporation using a scalable, Good Manufacturing Practice-compliant system to restore protein expression and NADPH oxidase function. Dose-escalating clinical-scale in vivo studies in a nonhuman primate model verify the feasibility, safety, and persistence in peripheral blood of infusions of mRNA-transfected autologous granulocyte-enriched apheresis cells, supporting this novel therapeutic approach as a potential nonalloimmunizing adjunct treatment of intractable infections in CGD patients.


Asunto(s)
Eliminación de Componentes Sanguíneos , Enfermedad Granulomatosa Crónica , Granulocitos , Enfermedad Granulomatosa Crónica/terapia , Humanos , NADPH Oxidasas/genética , ARN Mensajero/genética , Transfección
18.
Nat Commun ; 10(1): 4479, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578323

RESUMEN

Hematopoietic stem cell (HSC) gene therapy is being evaluated for hemoglobin disorders including sickle cell disease (SCD). Therapeutic globin vectors have demanding requirements including high-efficiency transduction at the HSC level and high-level, erythroid-specific expression with long-term persistence. The requirement of intron 2 for high-level ß-globin expression dictates a reverse-oriented globin-expression cassette to prevent its loss from RNA splicing. Current reverse-oriented globin vectors can drive phenotypic correction, but they are limited by low vector titers and low transduction efficiencies. Here we report a clinically relevant forward-oriented ß-globin-expressing vector, which has sixfold higher vector titers and four to tenfold higher transduction efficiency for long-term hematopoietic repopulating cells in humanized mice and rhesus macaques. Insertion of Rev response element (RRE) allows intron 2 to be retained, and ß-globin production is observed in transplanted macaques and human SCD CD34+ cells. These findings bring us closer to a widely applicable gene therapy for hemoglobin disorders.


Asunto(s)
Anemia de Células Falciformes/terapia , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Globinas beta/genética , Anemia de Células Falciformes/genética , Animales , Antígenos CD34/metabolismo , Vectores Genéticos/genética , Humanos , Macaca mulatta , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Reproducibilidad de los Resultados , Trasplante Heterólogo , Globinas beta/metabolismo
19.
Exp Hematol ; 35(6): 872-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17533041

RESUMEN

OBJECTIVE: Granulocyte colony-stimulating factor (G-CSF) is frequently used therapeutically to treat chronic or transient neutropenia and to mobilize hematopoietic stem cells. Shortly following G-CSF administration, we observed a dramatic transient drop in circulating neutrophil number. This article characterizes this effect in a rhesus macaque animal model. METHODS: Hematologic changes were monitored following subcutaneous (SQ) administration of G-CSF. G-CSF was administered as a single SQ dose at 10 microg/kg or 50 microg/kg. It was also administered (10 microg/kg) in combination with stem cell factor (SCF; 200 microg/kg) over 5 days. Flow cytometry was performed on serial blood samples to detect changes in cell surface adhesion protein expression. RESULTS: Neutrophil count dramatically declined 30 minutes after G-CSF administration. This decline was observed whether 10 microg/kg G-CSF was administered in combination with SCF over 5 days, or given as a single 10 microg/kg dose. At a single 50 microg/kg dose, the decline accelerated to 15 minutes. Neutrophil count returned to baseline after 120 minutes and rapidly increased thereafter. An increase in CD11a and CD49d expression coincided with the drop in neutrophil count. CONCLUSION: A transient paradoxical decline in neutrophil count was observed following administration of G-CSF either alone or in combination with SCF. This decline accelerated with the administration of a higher dose of G-CSF and was associated with an increase in CD11a and CD49d expression. It remains to be determined whether this decline in circulating neutrophils is associated with an increase in endothelial margination and/or entrance into extravascular compartments.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Recuento de Leucocitos , Neutrófilos/citología , Factor de Células Madre/administración & dosificación , Animales , Antígeno CD11a/biosíntesis , Enfermedad Crónica , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Integrina alfa4/biosíntesis , Macaca mulatta , Modelos Biológicos , Neutropenia/sangre , Neutropenia/tratamiento farmacológico , Neutrófilos/metabolismo , Factores de Tiempo
20.
Mol Ther Methods Clin Dev ; 11: 143-154, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547048

RESUMEN

Gene therapies using integrating retrovirus vectors to modify hematopoietic stem and progenitor cells have shown great promise for the treatment of immune system and hematologic diseases. However, activation of proto-oncogenes via insertional mutagenesis has resulted in the development of leukemia. We have utilized cellular bar coding to investigate the impact of different vector designs on the clonal behavior of hematopoietic stem and progenitor cells (HSPCs) during in vivo expansion, as a quantitative surrogate assay for genotoxicity in a non-human primate model with high relevance for human biology. We transplanted two rhesus macaques with autologous CD34+ HSPCs transduced with three lentiviral vectors containing different promoters and/or enhancers of a predicted range of genotoxicities, each containing a high-diversity barcode library that uniquely tags each individual transduced HSPC. Analysis of clonal output from thousands of individual HSPCs transduced with these barcoded vectors revealed sustained clonal diversity, with no progressive dominance of clones containing any of the three vectors for up to almost 3 years post-transplantation. Our data support a low genotoxic risk for lentivirus vectors in HSPCs, even those containing strong promoters and/or enhancers. Additionally, this flexible system can be used for the testing of future vector designs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA