Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(4): e2214175120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649419

RESUMEN

Copper is distinctive in electrocatalyzing reduction of CO2 into various energy-dense forms, but it often suffers from limited product selectivity including ethanol in competition with ethylene. Here, we describe systematically designed, bimetallic electrocatalysts based on copper/gold heterojunctions with a faradaic efficiency toward ethanol of 60% at currents in excess of 500 mA cm-2. In the modified catalyst, the ratio of ethanol to ethylene is enhanced by a factor of 200 compared to copper catalysts. Analysis by ATR-IR measurements under operating conditions, and by computational simulations, suggests that reduction of CO2 at the copper/gold heterojunction is dominated by generation of the intermediate OCCOH*. The latter is a key contributor in the overall, asymmetrical electrohydrogenation of CO2 giving ethanol rather than ethylene.

2.
Genome Res ; 32(7): 1298-1314, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35728967

RESUMEN

The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.


Asunto(s)
Encéfalo , Elementos de Nucleótido Esparcido Largo , Retroelementos , Animales , Proteínas de Unión al ADN/genética , Macaca mulatta/genética , Neuronas , Retroelementos/genética , Factores de Transcripción/genética
3.
Chem Rev ; 123(17): 10530-10583, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37589482

RESUMEN

Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.

4.
Mol Carcinog ; 63(6): 1024-1037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411275

RESUMEN

Homologous recombination (HR) and poly ADP-ribosylation are partially redundant pathways for the repair of DNA damage in normal and cancer cells. In cell lines that are deficient in HR, inhibition of poly (ADP-ribose) polymerase (poly (ADP-ribose) polymerase [PARP]1/2) is a proven target with several PARP inhibitors (PARPis) currently in clinical use. Resistance to PARPi often develops, usually involving genetic alterations in DNA repair signaling cascades, but also metabolic rewiring particularly in HR-proficient cells. We surmised that alterations in metabolic pathways by cancer drugs such as Olaparib might be involved in the development of resistance to drug therapy. To test this hypothesis, we conducted a metabolism-focused clustered regularly interspaced short palindromic repeats knockout screen to identify genes that undergo alterations during the treatment of tumor cells with PARPis. Of about 3000 genes in the screen, our data revealed that mitochondrial pyruvate carrier 1 (MPC1) is an essential factor in desensitizing nonsmall cell lung cancer (NSCLC) lung cancer lines to PARP inhibition. In contrast to NSCLC lung cancer cells, triple-negative breast cancer cells do not exhibit such desensitization following MPC1 loss and reprogram the tricarboxylic acid cycle and oxidative phosphorylation pathways to overcome PARPi treatment. Our findings unveil a previously unknown synergistic response between MPC1 loss and PARP inhibition in lung cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Pulmonares , Transportadores de Ácidos Monocarboxílicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Línea Celular Tumoral , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética
5.
J Pathol ; 260(3): 276-288, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37185821

RESUMEN

The effect of cytokines on non-traditional immunological targets under conditions of chronic inflammation is an ongoing subject of study. Fatigue is a symptom often associated with autoimmune diseases. Chronic inflammatory response and activated cell-mediated immunity are associated with cardiovascular myopathies which can be driven by muscle weakness and fatigue. Thus, we hypothesize that immune dysfunction-driven changes in myocyte mitochondria may play a critical role in fatigue-related pathogenesis. We show that persistent low-level expression of IFN-γ in designated IFN-γ AU-Rich Element deletion mice (ARE mice) under androgen exposure resulted in mitochondrial and metabolic deficiencies in myocytes from male or castrated ARE mice. Most notably, echocardiography unveiled that low ejection fraction in the left ventricle post-stress correlated with mitochondrial deficiencies, explaining how heart function decreases under stress. We report that inefficiencies and structural changes in mitochondria, with changes to expression of mitochondrial genes, are linked to male-biased fatigue and acute cardiomyopathy under stress. Our work highlights how male androgen hormone backgrounds and active autoimmunity reduce mitochondrial function and the ability to cope with stress and how pharmacological blockade of stress signal protects heart function. These studies provide new insight into the diverse actions of IFN-γ in fatigue, energy metabolism, and autoimmunity. © 2023 The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Andrógenos , Interferón gamma , Animales , Masculino , Ratones , Andrógenos/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Mitocondrias/metabolismo , Células Musculares/metabolismo
6.
Angew Chem Int Ed Engl ; 63(9): e202316772, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38204294

RESUMEN

Renewable electricity driven electrocatalytic CO2 reduction reaction (CO2 RR) is a promising solution to carbon neutralization, which mainly generate simple carbon products. It is of great importance to produce more valuable C-N chemicals from CO2 and nitrogen species. However, it is challenging to co-reduce CO2 and NO3 - /NO2 - to generate aldoxime an important intermediate in the electrocatalytic C-N coupling process. Herein, we report the successful electrochemical conversion of CO2 and NO2 - to acetamide for the first time over copper catalysts under alkaline condition through a gas diffusion electrode. Operando spectroelectrochemical characterizations and DFT calculations, suggest acetaldehyde and hydroxylamine identified as key intermediates undergo a nucleophilic addition reaction to produce acetaldoxime, which is then dehydrated to acetonitrile and followed by hydrolysis to give acetamide under highly local alkaline environment and electric field. Moreover, the above mechanism was successfully extended to the formation of phenylacetamide. This study provides a new strategy to synthesize highly valued amides from CO2 and wastewater.

7.
J Am Chem Soc ; 145(39): 21491-21501, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37733833

RESUMEN

Electrochemical nitrate (NO3-) reduction in aqueous media provides a useful approach for ammonia (NH3) synthesis. While efforts are focused on developing catalysts, the local microenvironment surrounding the catalyst centers is of great importance for controlling electrocatalytic performance. Here, we demonstrate that a self-assembled molecular iron catalyst integrated in a free-standing conductive hydrogel is capable of selective production of NH3 from NO3- at efficiencies approaching unity. With the electrocatalytic hydrogel, the NH3 selectivity is consistently high under a range of negative biases, which results from the hydrophobicity increase of the polycarbazole-based electrode substrate. In mildly acidic media, proton reduction is suppressed by electro-dewetting of the hydrogel electrode, enhancing the selectivity of NO3- reduction. The electrocatalytic hydrogel is capable of continuous production of NH3 for at least 100 h with NH3 selectivity of ∼89 to 98% at high current densities. Our results highlight the role of constructing an internal hydrophobic surface for electrocatalysts in controlling selectivity in aqueous media.

8.
Blood ; 137(1): 126-137, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32785680

RESUMEN

Graft-versus-host disease (GVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (AHSCT). Definitive diagnosis of GVHD is invasive, and biopsies of involved tissues pose a high risk of bleeding and infection. T cells are central to GVHD pathogenesis, and our previous studies in a chronic GVHD mouse model showed that alloreactive CD4+ T cells traffic to the target organs ahead of overt symptoms. Because increased glycolysis is an early feature of T-cell activation, we hypothesized that in vivo metabolic imaging of glycolysis would allow noninvasive detection of liver GVHD as activated CD4+ T cells traffic into the organ. Indeed, hyperpolarized 13C-pyruvate magnetic resonance imaging detected high rates of conversion of pyruvate to lactate in the liver ahead of animals becoming symptomatic, but not during subsequent overt chronic GVHD. Concomitantly, CD4+ T effector memory cells, the predominant pathogenic CD4+ T-cell subset, were confirmed to be highly glycolytic by transcriptomic, protein, metabolite, and ex vivo metabolic activity analyses. Preliminary data from single-cell sequencing of circulating T cells in patients undergoing AHSCT also suggested that increased glycolysis may be a feature of incipient acute GVHD. Metabolic imaging is being increasingly used in the clinic and may be useful in the post-AHSCT setting for noninvasive early detection of GVHD.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Enfermedad Injerto contra Huésped/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Isótopos de Carbono , Glucólisis , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Activación de Linfocitos/inmunología , Ratones , Análisis de la Célula Individual/métodos , Trasplante Homólogo
9.
Proc Natl Acad Sci U S A ; 117(24): 13256-13260, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482883

RESUMEN

Artificial photosynthesis provides a way to store solar energy in chemical bonds. Achieving water splitting without an applied external potential bias provides the key to artificial photosynthetic devices. We describe here a tandem photoelectrochemical cell design that combines a dye-sensitized photoelectrosynthesis cell (DSPEC) and an organic solar cell (OSC) in a photoanode for water oxidation. When combined with a Pt electrode for H2 evolution, the electrode becomes part of a combined electrochemical cell for water splitting, 2H2O → O2 + 2H2, by increasing the voltage of the photoanode sufficiently to drive bias-free reduction of H+ to H2 The combined electrode gave a 1.5% solar conversion efficiency for water splitting with no external applied bias, providing a mimic for the tandem cell configuration of PSII in natural photosynthesis. The electrode provided sustained water splitting in the molecular photoelectrode with sustained photocurrent densities of 1.24 mA/cm2 for 1 h under 1-sun illumination with no applied bias.

10.
Proc Natl Acad Sci U S A ; 117(23): 12564-12571, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-31488721

RESUMEN

In the development of photoelectrochemical cells for water splitting or CO2 reduction, a major challenge is O2 evolution at photoelectrodes that, in behavior, mimic photosystem II. At an appropriate semiconductor electrode, a water oxidation catalyst must be integrated with a visible light absorber in a stable half-cell configuration. Here, we describe an electrode consisting of a light absorber, an intermediate electron donor layer, and a water oxidation catalyst for sustained light driven water oxidation catalysis. In assembling the electrode on nanoparticle SnO2/TiO2 electrodes, a Ru(II) polypyridyl complex was used as the light absorber, NiO was deposited as an overlayer, and a Ru(II) 2,2'-bipyridine-6,6'-dicarboxylate complex as the water oxidation catalyst. In the final electrode, addition of the NiO overlayer enhanced performance toward water oxidation with the final electrode operating with a 1.1 mA/cm2 photocurrent density for 2 h without decomposition under one sun illumination in a pH 4.65 solution. We attribute the enhanced performance to the role of NiO as an electron transfer mediator between the light absorber and the catalyst.

11.
Proc Natl Acad Sci U S A ; 117(9): 4921-4930, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071223

RESUMEN

Antibiotic-resistant superbug bacteria represent a global health problem with no imminent solutions. Here we demonstrate that the combination (termed AB569) of acidified nitrite (A-NO2-) and Na2-EDTA (disodium ethylenediaminetetraacetic acid) inhibited all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism Pseudomonas aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations using a basic viability assay. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of periepithelial infections and related disease scenarios.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Ácido Edético/farmacología , Nitrito de Sodio/farmacología , Animales , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo , Farmacorresistencia Bacteriana/efectos de los fármacos , Ácido Edético/química , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Redes y Vías Metabólicas , Ratones , Nitritos/química , Nitritos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos
12.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768931

RESUMEN

Elevated expression of CD47 in some cancers is associated with poor survival related to its function as an innate immune checkpoint when expressed on tumor cells. In contrast, elevated CD47 expression in cutaneous melanomas is associated with improved survival. Previous studies implicated protective functions of CD47 expressed by immune cells in the melanoma tumor microenvironment. RNA sequencing analysis of responses induced by CD3 and CD28 engagement on wild type and CD47-deficient Jurkat T lymphoblast cells identified additional regulators of T cell function that were also CD47-dependent in mouse CD8 T cells. MYCN mRNA expression was upregulated in CD47-deficient cells but downregulated in CD47-deficient cells following activation. CD47 also regulated alternative splicing that produces two N-MYC isoforms. The CD47 ligand thrombospondin-1 inhibited expression of these MYCN mRNA isoforms, as well as induction of the oncogenic decoy MYCN opposite strand (MYCNOS) RNA during T cell activation. Analysis of mRNA expression data for melanomas in The Cancer Genome Atlas identified a significant coexpression of MYCN with CD47 and known regulators of CD8 T cell function. Thrombospondin-1 inhibited the induction of TIGIT, CD40LG, and MCL1 mRNAs following T cell activation in vitro. Increased mRNA expression of these T cell transcripts and MYCN in melanomas was associated with improved overall survival.


Asunto(s)
Antígeno CD47 , Melanoma , Ratones , Animales , Antígeno CD47/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Linfocitos T CD8-positivos , Expresión Génica , Melanoma/genética , ARN Mensajero/genética , Trombospondinas/genética , Microambiente Tumoral
13.
Carcinogenesis ; 43(12): 1149-1161, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36306264

RESUMEN

Environmental and molecular carcinogenesis are linked by the discovery that chemical carcinogen induced-mutations in the Hras or Kras genes drives tumor development in mouse skin. Importantly, enhanced expression or allele amplification of the mutant Ras gene contributes to selection of initiated cells, tumor persistence, and progression. To explore the consequences of Ras oncogene signal strength, primary keratinocytes were isolated and cultured from the LSL-HrasG12D and LSL-KrasG12D C57BL/6J mouse models and the mutant allele was activated by adeno-Cre recombinase. Keratinocytes expressing one (H) or two (HH) mutant alleles of HrasG12D, one KrasG12D allele (K), or one of each (HK) were studied. All combinations of activated Ras alleles stimulated proliferation and drove transformation marker expression, but only HH and HK formed tumors. HH, HK, and K sustained long-term keratinocyte growth in vitro, while H and WT could not. RNA-Seq yielded two distinct gene expression profiles; HH, HK, and K formed one cluster while H clustered with WT. Weak MAPK activation was seen in H keratinocytes but treatment with a BRAF inhibitor enhanced MAPK signaling and facilitated tumor formation. K keratinocytes became tumorigenic when they were isolated from mice where the LSL-KrasG12D allele was backcrossed from the C57BL/6 onto the FVB/N background. All tumorigenic keratinocytes but not the non-tumorigenic precursors shared a common remodeling of matrisomal gene expression that is associated with tumor formation. Thus, RAS oncogene signal strength determines cell-autonomous changes in initiated cells that are critical for their tumor-forming potential.


Asunto(s)
Transformación Celular Neoplásica , Genes ras , Ratones , Animales , Transformación Celular Neoplásica/patología , Ratones Endogámicos C57BL , Queratinocitos/patología , Carcinogénesis/patología , Expresión Génica
14.
Chemistry ; 28(10): e202102630, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35113460

RESUMEN

In fabricating an artificial photosynthesis (AP) electrode for water oxidation, we have devised a semiconductor-mediator-catalyst structure that mimics photosystem II (PSII). It is based on a surface layer of vertically grown nanorods of Fe2 O3 on fluorine doped tin oxide (FTO) electrodes with a carbazole mediator base and a Ru(II) carbene complex on a nanolayer of TiO2 as a water oxidation co-catalyst. The resulting hybrid assembly, FTO|Fe2 O3 |-carbazole|TiO2 |-Ru(carbene), demonstrates an enhanced photoelectrochemical (PEC) water oxidation performance compared to an electrode without the added carbaozle base with an increase in photocurrent density of 2.2-fold at 0.95 V vs. NHE and a negatively shifted onset potential of 500 mV. The enhanced PEC performance is attributable to carbazole mediator accelerated interfacial hole transfer from Fe2 O3 to the Ru(II) carbene co-catalyst, with an improved effective surface area for the water oxidation reaction and reduced charge transfer resistance.


Asunto(s)
Fotosíntesis , Agua , Catálisis , Oxidación-Reducción , Semiconductores , Agua/química
15.
J Chem Phys ; 157(24): 244703, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586990

RESUMEN

A kinetic framework for the ultrafast photophysics of tris(2,2-bipyridine)ruthenium(II) phosphonated and methyl-phosphonated derivatives is used as a basis for modeling charge injection by ruthenium dyes into a semiconductor substrate. By including the effects of light scattering, dye diffusion, and adsorption kinetics during sample preparation and the optical response of oxidized dyes, quantitative agreement with multiple transient absorption datasets is achieved on timescales spanning femtoseconds to nanoseconds. In particular, quantitative agreement with important spectroscopic handles-the decay of an excited state absorption signal component associated with charge injection in the UV region of the spectrum and the dynamical redshift of a ∼500 nm isosbestic point-validates our kinetic model. Pseudo-first-order rate coefficients for charge injection are estimated in this work, with an order of magnitude ranging from 1011 to 1012 s-1. The model makes the minimalist assumption that all excited states of a particular dye have the same charge injection coefficient, an assumption that would benefit from additional theoretical and experimental exploration. We have adapted this kinetic model to predict charge injection under continuous solar irradiation and find that as many as 68 electron transfer events per dye per second take place, significantly more than prior estimates in the literature.

16.
Proc Natl Acad Sci U S A ; 116(23): 11153-11158, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31097592

RESUMEN

Significant progress has been made in designing single-site molecular Ru(II)-polypyridyl-aqua catalysts for homogenous catalytic water oxidation. Surface binding and transfer of the catalytic reactivity onto conductive substrates provides a basis for heterogeneous applications in electrolytic cells and dye-sensitized photoelectrosynthesis cells (DSPECs). Earlier efforts have focused on phosphonic acid (-PO3H2) or carboxylic acid (-CO2H) bindings on oxide surfaces. However, issues remain with limited surface stabilities, especially in aqueous solutions at higher pH under conditions that favor water oxidation by reducing the thermodynamic barrier and accelerating the catalytic rate using atom-proton transfer (APT) pathways. Here, we address the problem by combining silane surface functionalization and surface reductive electropolymerization on mesoporous, nanofilms of indium tin oxide (ITO) on fluorine-doped tin oxide (FTO) substrates (FTO|nanoITO). FTO|nanoITO electrodes were functionalized with vinyltrimethoxysilane (VTMS) to introduce vinyl groups on the electrode surfaces by silane attachment, followed by surface electropolymerization of the vinyl-derivatized complex, [RuII(Mebimpy)(dvbpy)(OH2)]2+ (12+; Mebimpy: 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine; dvbpy: 5,5'-divinyl-2,2'-bipyridine), in a mechanism dominated by a grafting-through method. The surface coverage of catalyst 12+ was controlled by the number of electropolymerization cycles. The combined silane attachment/cross-linked polymer network stabilized 12+ on the electrode surface under a variety of conditions especially at pH > ∼6. Surface-grafted poly12+ was stable toward redox cycling at pH ∼ 7.5 over an ∼4-h period. Sustained heterogeneous electrocatalytic water oxidation by the electrode gave steady-state currents for at least ∼6 h with a Faradaic efficiency of ∼68% for O2 production.

17.
Proc Natl Acad Sci U S A ; 116(52): 26353-26358, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822615

RESUMEN

Electrochemical reduction of CO2 to multicarbon products is a significant challenge, especially for molecular complexes. We report here CO2 reduction to multicarbon products based on a Ru(II) polypyridyl carbene complex that is immobilized on an N-doped porous carbon (RuPC/NPC) electrode. The catalyst utilizes the synergistic effects of the Ru(II) polypyridyl carbene complex and the NPC interface to steer CO2 reduction toward C2 production at low overpotentials. In 0.5 M KHCO3/CO2 aqueous solutions, Faradaic efficiencies of 31.0 to 38.4% have been obtained for C2 production at -0.87 to -1.07 V (vs. normal hydrogen electrode) with 21.0 to 27.5% for ethanol and 7.1 to 12.5% for acetate. Syngas is also produced with adjustable H2/CO mole ratios of 2.0 to 2.9. The RuPC/NPC electrocatalyst maintains its activity during 3-h CO2-reduction periods.

18.
Proc Natl Acad Sci U S A ; 116(33): 16198-16203, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31366631

RESUMEN

The direction of electron flow in molecular optoelectronic devices is dictated by charge transfer between a molecular excited state and an underlying conductor or semiconductor. For those devices, controlling the direction and reversibility of electron flow is a major challenge. We describe here a single-molecule photodiode. It is based on an internally conjugated, bichromophoric dyad with chemically linked (porphyrinato)zinc(II) and bis(terpyridyl)ruthenium(II) groups. On nanocrystalline, degenerately doped indium tin oxide electrodes, the dyad exhibits distinct frequency-dependent, charge-transfer characters. Variations in the light source between red-light (∼1.9 eV) and blue-light (∼2.7 eV) excitation for the integrated photodiode result in switching of photocurrents between cathodic and anodic. The origin of the excitation frequency-dependent photocurrents lies in the electronic structure of the chromophore excited states, as shown by the results of theoretical calculations, laser flash photolysis, and steady-state spectrophotometric measurements.

19.
Genome Res ; 28(7): 983-997, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29914971

RESUMEN

The relationship between evolutionary genome remodeling and the three-dimensional structure of the genome remain largely unexplored. Here, we use the heavily rearranged gibbon genome to examine how evolutionary chromosomal rearrangements impact genome-wide chromatin interactions, topologically associating domains (TADs), and their epigenetic landscape. We use high-resolution maps of gibbon-human breaks of synteny (BOS), apply Hi-C in gibbon, measure an array of epigenetic features, and perform cross-species comparisons. We find that gibbon rearrangements occur at TAD boundaries, independent of the parameters used to identify TADs. This overlap is supported by a remarkable genetic and epigenetic similarity between BOS and TAD boundaries, namely presence of CpG islands and SINE elements, and enrichment in CTCF and H3K4me3 binding. Cross-species comparisons reveal that regions orthologous to BOS also correspond with boundaries of large (400-600 kb) TADs in human and other mammalian species. The colocalization of rearrangement breakpoints and TAD boundaries may be due to higher chromatin fragility at these locations and/or increased selective pressure against rearrangements that disrupt TAD integrity. We also examine the small portion of BOS that did not overlap with TAD boundaries and gave rise to novel TADs in the gibbon genome. We postulate that these new TADs generally lack deleterious consequences. Last, we show that limited epigenetic homogenization occurs across breakpoints, irrespective of their time of occurrence in the gibbon lineage. Overall, our findings demonstrate remarkable conservation of chromatin interactions and epigenetic landscape in gibbons, in spite of extensive genomic shuffling.


Asunto(s)
Epigénesis Genética/genética , Genoma/genética , Animales , Cromatina/genética , Islas de CpG/genética , Epigenómica/métodos , Genómica/métodos , Humanos , Sintenía/genética
20.
Acc Chem Res ; 53(1): 255-264, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31913013

RESUMEN

Due to increasing worldwide fossil fuel consumption, carbon dioxide levels have increased in the atmosphere with increasingly important impacts on the environment. Renewable and clean sources of energy have been proposed, including wind and solar, but they are intermittent and require efficient and scalable energy storage technologies. Electrochemical CO2 reduction reaction (CO2RR) provides a valuable approach in this area. It combines solar- or wind-generated electrical production with energy storage in the chemical bonds of carbon-based fuels. It can provide ways to integrate carbon capture, utilization, and storage in energy cycles while maintaining controlled levels of atmospheric CO2. Electrochemistry allows for the utilization of an electrical input to drive chemical reactions. Because CO2 is kinetically inert, highly active catalysts are required to decrease reaction barriers sufficiently so that reaction rates can be achieved that are sufficient for electrochemical CO2 reduction. Given the reaction barriers associated with multiple electron-proton reduction of CO2 to CO, formaldehyde (HC(O)H), formic acid, or formate (HC(O)OH, HC(O)O-), or more highly reduced forms of carbon, there is also a demand for high selectivity in catalysis. Catalysts that have been explored include homogeneous catalysts in solution, catalysts immobilized on surfaces, and heterogeneous catalysts. In homogeneous catalysis, reduction occurs following diffusion of the catalyst to an electrode where multiple proton coupled electron transfer reduction occurs. Useful catalysts in this area are typically transition-metal complexes with organic ligands and electron transfer properties that utilize combinations of metal and ligand redox levels. As a way to limit the amount of catalyst, in device-like configurations, catalysts are added to the surfaces of conductive substrates by surface binding, in polymeric films, or on carbon electrode surfaces with molecular structures and electronic configurations related to catalysts in solution. Immobilized, homogeneous catalysts can suffer from performance losses and even decomposition during long-term CO2 reduction cycles, but they are amenable to detailed mechanistic investigations. In parallel efforts, heterogeneous nanocatalysts have been explored in detail with the development of facile synthetic procedures that can offer highly active catalytic surface areas. Their high activity and stability have attracted a significant level of investigation, including possible exploitation for large-scale applications. However, translation of catalytic reactivity to the surface creates a new reactivity environment and complicates the elucidation of mechanistic details and identification of the active site in exploring reaction pathways. Here, the results of previous studies based on transition-metal complex catalysts for CO2 electroreduction are summarized. Early studies showed that transition-metal complexes of Ru, Ir, Rh, and Os, with well-defined structures, are all capable of catalyzing CO2 reduction to CO or formate. Derivatives of the complexes were surface attached to conducting electrodes by chemical bonding, noncovalent bonding, or polymerization. The concept of surface binding has also been extended to the preparation of surface area electrodes by the chemically controlled deposition of nanostructured catalysts such as nano tin, nano copper, and nano carbon, all of which have been shown to have high selectivities and activities toward CO2 reduction. In our presentation, we end this Account with recent advances and a perspective about the application of electrocatalysis in carbon dioxide reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA