Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Nat Immunol ; 21(7): 802-815, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541832

RESUMEN

Microglia and central nervous system (CNS)-associated macrophages (CAMs), such as perivascular and meningeal macrophages, are implicated in virtually all diseases of the CNS. However, little is known about their cell-type-specific roles in the absence of suitable tools that would allow for functional discrimination between the ontogenetically closely related microglia and CAMs. To develop a new microglia gene targeting model, we first applied massively parallel single-cell analyses to compare microglia and CAM signatures during homeostasis and disease and identified hexosaminidase subunit beta (Hexb) as a stably expressed microglia core gene, whereas other microglia core genes were substantially downregulated during pathologies. Next, we generated HexbtdTomato mice to stably monitor microglia behavior in vivo. Finally, the Hexb locus was employed for tamoxifen-inducible Cre-mediated gene manipulation in microglia and for fate mapping of microglia but not CAMs. In sum, we provide valuable new genetic tools to specifically study microglia functions in the CNS.


Asunto(s)
Encéfalo/patología , Encefalomielitis Autoinmune Experimental/patología , Traumatismos del Nervio Facial/patología , Microglía/metabolismo , Cadena beta de beta-Hexosaminidasa/metabolismo , Animales , Encéfalo/citología , Encéfalo/inmunología , Sistemas CRISPR-Cas/genética , Encefalomielitis Autoinmune Experimental/inmunología , Traumatismos del Nervio Facial/inmunología , Técnicas de Sustitución del Gen , Genes Reporteros/genética , Sitios Genéticos/genética , Humanos , Microscopía Intravital , Sustancias Luminiscentes/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microglía/inmunología , Células 3T3 NIH , RNA-Seq , Análisis de la Célula Individual , Transfección , Cadena beta de beta-Hexosaminidasa/genética , Proteína Fluorescente Roja
3.
Immunity ; 50(6): 1482-1497.e7, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31201094

RESUMEN

The skin comprises tissue macrophages as the most abundant resident immune cell type. Their diverse tasks including resistance against invading pathogens, attraction of bypassing immune cells from vessels, and tissue repair require dynamic specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into subsets by adapting single-cell transcriptomics, fate mapping, and imaging. Thereby we identified a phenotypically and transcriptionally distinct subset of prenatally seeded dermal macrophages that self-maintained with very low postnatal exchange by hematopoietic stem cells. These macrophages specifically interacted with sensory nerves and surveilled and trimmed the myelin sheath. Overall, resident dermal macrophages contributed to axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by stepwise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment.


Asunto(s)
Diferenciación Celular/inmunología , Vigilancia Inmunológica , Macrófagos/inmunología , Regeneración Nerviosa , Piel/inmunología , Piel/inervación , Animales , Animales Recién Nacidos , Biomarcadores , Receptor 1 de Quimiocinas CX3C/metabolismo , Dermis/citología , Dermis/inmunología , Dermis/metabolismo , Inmunofenotipificación , Macrófagos/metabolismo , Ratones , Piel/citología
4.
Immunity ; 48(3): 514-529.e6, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29548672

RESUMEN

Microglia as tissue macrophages contribute to the defense and maintenance of central nervous system (CNS) homeostasis. Little is known about the epigenetic signals controlling microglia function in vivo. We employed constitutive and inducible mutagenesis in microglia to delete two class I histone deacetylases, Hdac1 and Hdac2. Prenatal ablation of Hdac1 and Hdac2 impaired microglial development. Mechanistically, the promoters of pro-apoptotic and cell cycle genes were hyperacetylated in absence of Hdac1 and Hdac2, leading to increased apoptosis and reduced survival. In contrast, Hdac1 and Hdac2 were not required for adult microglia survival during homeostasis. In a mouse model of Alzheimer's disease, deletion of Hdac1 and Hdac2 in microglia, but not in neuroectodermal cells, resulted in a decrease in amyloid load and improved cognitive impairment by enhancing microglial amyloid phagocytosis. Collectively, we report a role for epigenetic factors that differentially affect microglia development, homeostasis, and disease that could potentially be utilized therapeutically.


Asunto(s)
Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Homeostasis , Microglía/inmunología , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Neurogénesis/genética , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Epigénesis Genética , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/psicología , Neurogénesis/inmunología , Fagocitosis/inmunología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Aprendizaje Espacial , Transcriptoma
5.
Mol Psychiatry ; 27(10): 4274-4284, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35869271

RESUMEN

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) which ultimately forms plaques. These Aß deposits can be induced in APP transgenic mouse models by prion-like seeding. It has been widely accepted that anosmia and hyposmia occur during the early stages of AD, even before cognitive deficits are present. In order to determine the impact of seed-induced Aß deposits on olfaction, we performed intracerebral injections of seed-competent brain homogenate into the olfactory bulb of young pre-depositing APP transgenic mice. Remarkably, we observed a dramatic olfactory impairment in those mice. Furthermore, the number of newborn neurons as well as the activity of cells in the mitral cell layer was decreased. Notably, exposure to an enriched environment reduced Aß seeding, vivified neurogenesis and most importantly reversed olfactory deficits. Based on our findings, we conclude that altered neuronal function as a result of induced Aß pathology might contribute to olfactory dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/patología , Olfato , Péptidos beta-Amiloides , Ratones Transgénicos , Modelos Animales de Enfermedad , Neuronas/patología , Precursor de Proteína beta-Amiloide/genética
6.
EMBO J ; 37(2): 167-182, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29229786

RESUMEN

Alzheimer's disease (AD) is characterized by severe neuronal loss as well as the accumulation of amyloid-ß (Aß), which ultimately leads to plaque formation. Although there is now a general agreement that the aggregation of Aß can be initiated by prion-like seeding, the impact and functional consequences of induced Aß deposits (Aß seeding) on neurons still remain open questions. Here, we find that Aß seeding, representing early stages of plaque formation, leads to a dramatic decrease in proliferation and neurogenesis in two APP transgenic mouse models. We further demonstrate that neuronal cell death occurs primarily in the vicinity of induced Aß deposits culminating in electrophysiological abnormalities. Notably, environmental enrichment and voluntary exercise not only revives adult neurogenesis and reverses memory deficits but, most importantly, prevents Aß seeding by activated, phagocytic microglia cells. Our work expands the current knowledge regarding Aß seeding and the consequences thereof and attributes microglia an important role in diminishing Aß seeding by environmental enrichment.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proliferación Celular , Microglía/metabolismo , Fagocitosis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía/patología
7.
Mol Cell Proteomics ; 14(10): 2550-63, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26139848

RESUMEN

Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1-/- and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1-/- and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1-/- mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/líquido cefalorraquídeo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/líquido cefalorraquídeo , Ácido Aspártico Endopeptidasas/metabolismo , Proteómica/métodos , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/metabolismo , Receptores de Superficie Celular/metabolismo
8.
Acta Neuropathol ; 128(3): 333-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056803

RESUMEN

Microglia, the tissue-resident macrophages of the brain, are attracting increasing attention as key players in brain homeostasis from development through aging. Recent works have highlighted new and unexpected roles for these once-enigmatic cells in both healthy central nervous system function and in diverse pathologies long thought to be primarily the result of neuronal malfunction. In this review, we have chosen to focus on Rett syndrome, which features early neurodevelopmental pathology, and Alzheimer's disease, a disorder associated predominantly with aging. Interestingly, receptor-mediated microglial phagocytosis has emerged as a key function in both developmental and late-life brain pathologies. In a mouse model of Rett syndrome, bone marrow transplant and CNS engraftment of microglia-like cells were associated with surprising improvements in pathology-these benefits were abrogated by block of phagocytic function. In Alzheimer's disease, large-scale genome-wide association studies have been brought to bear as a method of identifying previously unknown susceptibility genes, which highlight microglial receptors as promising novel targets for therapeutic modulation. Multi-photon in vivo microscopy has provided a method of directly visualizing the effects of manipulation of these target genes. Here, we review the latest findings and concepts emerging from the rapidly growing body of literature exemplified for Rett syndrome and late-onset, sporadic Alzheimer's disease.


Asunto(s)
Encéfalo , Enfermedades del Sistema Nervioso Central/patología , Microglía/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Humanos , Ratones
9.
Nature ; 451(7179): 720-4, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18256671

RESUMEN

Senile plaques accumulate over the course of decades in the brains of patients with Alzheimer's disease. A fundamental tenet of the amyloid hypothesis of Alzheimer's disease is that the deposition of amyloid-beta precedes and induces the neuronal abnormalities that underlie dementia. This idea has been challenged, however, by the suggestion that alterations in axonal trafficking and morphological abnormalities precede and lead to senile plaques. The role of microglia in accelerating or retarding these processes has been uncertain. To investigate the temporal relation between plaque formation and the changes in local neuritic architecture, we used longitudinal in vivo multiphoton microscopy to sequentially image young APPswe/PS1d9xYFP (B6C3-YFP) transgenic mice. Here we show that plaques form extraordinarily quickly, over 24 h. Within 1-2 days of a new plaque's appearance, microglia are activated and recruited to the site. Progressive neuritic changes ensue, leading to increasingly dysmorphic neurites over the next days to weeks. These data establish plaques as a critical mediator of neuritic pathology.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Modelos Animales de Enfermedad , Placa Amiloide/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Axones/metabolismo , Progresión de la Enfermedad , Ratones , Ratones Transgénicos , Microglía/metabolismo , Neuritas/metabolismo , Neuritas/patología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Factores de Tiempo
10.
Acta Neuropathol ; 126(2): 179-88, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23775142

RESUMEN

Amyloid-ß (Aß) plaque deposition plays a central role in the pathogenesis of Alzheimer's disease (AD). Post-mortem analysis of plaque development in mouse models of AD revealed that plaques are initially small, but then increase in size and become more numerous with age. There is evidence that plaques can grow uniformly over time; however, a complementary hypothesis of plaque development is that small plaques cluster and grow together thereby forming larger plaques. To investigate the latter hypothesis, we studied plaque formation in APPPS1 mice using in vivo two-photon microscopy and immunohistochemical analysis. We used sequential pre- and post-mortem staining techniques to label plaques at different stages of development and to detect newly emerged plaques. Post-mortem analysis revealed that a subset (22 %) of newly formed plaques appeared very close (<40 µm) to pre-existing plaques and that many close plaques (25 %) that were initially separate merged over time to form one single large plaque. Our results suggest that small plaques can cluster together, thus forming larger plaques as a complementary mechanism to simple uniform plaque growth from a single initial plaque. This study deepens our understanding of Aß deposition and demonstrates that there are multiple mechanisms at play in plaque development.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Placa Amiloide/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Coloración y Etiquetado/métodos
11.
Cells ; 12(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067185

RESUMEN

Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-ß plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Células-Madre Neurales , Proteínas de Complejo Poro Nuclear , Proteínas Proto-Oncogénicas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Cromatina/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Membrana Nuclear/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
12.
Methods ; 53(3): 201-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21163350

RESUMEN

Aggregation of amyloid beta peptide into senile plaques and hyperphosphorylated tau protein into neurofibrillary tangles in the brain are the pathological hallmarks of Alzheimer's disease. Despite over a century of research into these lesions, the exact relationship between pathology and neurotoxicity has yet to be fully elucidated. In order to study the formation of plaques and tangles and their effects on the brain, we have applied multiphoton in vivo imaging of transgenic mouse models of Alzheimer's disease. This technique allows longitudinal imaging of pathological aggregation of proteins and the subsequent changes in surrounding neuropil neurodegeneration and recovery after therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Anestesia , Animales , Encéfalo/metabolismo , Encéfalo/patología , Craneotomía , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Ovillos Neurofibrilares/patología , Placa Amiloide/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(10): 4012-7, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19228947

RESUMEN

Synapse loss correlates with a cognitive decline in Alzheimer's disease (AD), but whether this is caused by fibrillar deposits known as senile plaques or soluble oligomeric forms of amyloid beta (Abeta) is controversial. By using array tomography, a technique that combines ultrathin sectioning of tissue with immunofluorescence, allowing precise quantification of small structures, such as synapses, we have tested the hypothesis that oligomeric Abeta surrounding plaques contributes to synapse loss in a mouse model of AD. We find that senile plaques are surrounded by a halo of oligomeric Abeta. Analysis of >14,000 synapses (represented by PSD95-stained excitatory synapses) shows that there is a 60% loss of excitatory synapses in the halo of oligomeric Abeta surrounding plaques and that the density increases to reach almost control levels in volumes further than 50 microm from a plaque in an approximately linear fashion (linear regression, r(2) = 0.9; P < 0.0001). Further, in transgenic cortex, microdeposits of oligomeric Abeta associate with a subset of excitatory synapses, which are significantly smaller than those not in contact with oligomeric Abeta. The proportion of excitatory synapses associated with Abeta correlates with decreasing density (correlation, -0.588; P < 0.0001). These data show that senile plaques are a potential reservoir of oligomeric Abeta, which colocalizes with the postsynaptic density and is associated with spine collapse, reconciling the apparently competing schools of thought of "plaque" vs. "oligomeric Abeta" as the synaptotoxic species in the brain of AD patients.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Potenciales Postsinápticos Excitadores , Placa Amiloide/metabolismo , Sinapsis/metabolismo , Animales , Ratones , Estructura Cuaternaria de Proteína , Tomografía
14.
Front Cell Neurosci ; 16: 862918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003141

RESUMEN

Neuropathologically, Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta peptide (Aß) and subsequent formation of the so-called Aß plaques. Along with neuronal loss, previous studies report white matter anomalies and corpus callosum (CC) atrophy in AD patients. Notably, perturbations in the white matter can be observed years before expected disease onset, suggesting that early stages of disease progression play a role in AD-associated loss of myelin integrity. Through seed-induced deposition of Aß, we are able to examine alterations of central nervous system (CNS) integrity during the initial stages of plaque formation. In this study, we investigate the impact of Aß seeding in the CC utilizing various imaging techniques as well as quantitative gene expression analysis and demonstrate that Aß deposits result in an imbalance of glial cells in the CC. We found increased amounts of phagocytic microglia and reactive astrocytes, while oligodendrocyte progenitor cell (OPC) numbers were reduced. Moreover, white matter aberrations adjacent to the Aß seeding were observed together with an overall decline in callosal myelination. This data indicate that the initial stages of plaque formation induce oligodendrocyte dysfunction, which might ultimately lead to myelin loss.

15.
Brain Pathol ; 32(3): e13032, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34713522

RESUMEN

Several degenerative brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the simultaneous appearance of amyloid-ß (Aß) and α-synuclein (α-syn) pathologies and symptoms that are similar, making it difficult to differentiate between these diseases. Until now, an accurate diagnosis can only be made by postmortem analysis. Furthermore, the role of α-syn in Aß aggregation and the arising characteristic olfactory impairments observed during the progression of these diseases is still not well understood. Therefore, we assessed Aß load in olfactory bulbs of APP-transgenic mice expressing APP695KM670/671NL and PSEN1L166P under the control of the neuron-specific Thy-1 promoter (referred to here as APPPS1) and APPPS1 mice co-expressing SNCAA30P (referred to here as APPPS1 × [A30P]aSYN). Furthermore, the olfactory capacity of these mice was evaluated in the buried food and olfactory avoidance test. Our results demonstrate an age-dependent increase in Aß load in the olfactory bulb of APP-transgenic mice that go along with exacerbated olfactory performance. Our study provides clear evidence that the presence of α-syn significantly diminished the endogenous and seed-induced Aß deposits and significantly ameliorated olfactory dysfunction in APPPS1 × [A30P]aSYN mice.


Asunto(s)
Enfermedad de Alzheimer , Sinucleinopatías , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Bulbo Olfatorio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
Nat Neurosci ; 25(1): 20-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34811521

RESUMEN

Microglia appear activated in the vicinity of amyloid beta (Aß) plaques, but whether microglia contribute to Aß propagation into unaffected brain regions remains unknown. Using transplantation of wild-type (WT) neurons, we show that Aß enters WT grafts, and that this is accompanied by microglia infiltration. Manipulation of microglia function reduced Aß deposition within grafts. Furthermore, in vivo imaging identified microglia as carriers of Aß pathology in previously unaffected tissue. Our data thus argue for a hitherto unexplored mechanism of Aß propagation.


Asunto(s)
Péptidos beta-Amiloides , Microglía , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Microglía/metabolismo , Neuronas/metabolismo , Placa Amiloide/patología
17.
Neuro Oncol ; 23(11): 1885-1897, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33864086

RESUMEN

BACKGROUND: Glioblastoma cells assemble to a syncytial communicating network based on tumor microtubes (TMs) as ultra-long membrane protrusions. The relationship between network architecture and transcriptional profile remains poorly investigated. Drugs that interfere with this syncytial connectivity such as meclofenamate (MFA) may be highly attractive for glioblastoma therapy. METHODS: In a human neocortical slice model using glioblastoma cell populations of different transcriptional signatures, three-dimensional tumor networks were reconstructed, and TM-based intercellular connectivity was mapped on the basis of two-photon imaging data. MFA was used to modulate morphological and functional connectivity; downstream effects of MFA treatment were investigated by RNA sequencing and fluorescence-activated cell sorting (FACS) analysis. RESULTS: TM-based network morphology strongly differed between the transcriptional cellular subtypes of glioblastoma and was dependent on axon guidance molecule expression. MFA revealed both a functional and morphological demolishment of glioblastoma network architectures which was reflected by a reduction of TM-mediated intercellular cytosolic traffic as well as a breakdown of TM length. RNA sequencing confirmed a downregulation of NCAM and axon guidance molecule signaling upon MFA treatment. Loss of glioblastoma communicating networks was accompanied by a failure in the upregulation of genes that are required for DNA repair in response to temozolomide (TMZ) treatment and culminated in profound treatment response to TMZ-mediated toxicity. CONCLUSION: The capacity of TM formation reflects transcriptional cellular heterogeneity. MFA effectively demolishes functional and morphological TM-based syncytial network architectures. These findings might pave the way to a clinical implementation of MFA as a TM-targeted therapeutic approach.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ácido Meclofenámico/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Humanos , Técnicas In Vitro
18.
J Neurosci ; 29(40): 12636-40, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19812338

RESUMEN

Although neuronal communication is thought to be summated within local dendritic segments, no technique is currently available to monitor activity in vivo at this level of resolution. To overcome this challenge, we developed an optical reporter of neuronal activity using the coding sequence of Venus, flanked by short stretches of the 5'- and 3'-untranslated regions from calcium/calmodulin-dependent kinase IIalpha (CAMKIIalpha). This reporter takes advantage of the fact that CAMKIIalpha mRNA is transported to the dendrite and locally translated in an activity-dependent manner. Using adeno-associated virus, we used this reporter to study neuronal activity in adult mice. Exposure of the mice to an enriched environment led to enhancement of Venus expression in dendritic segments of somatosensory cortex, demonstrating in vivo that dendritic mRNA translocation and local translation occur in response to physiologically relevant stimuli. We then used this system to examine the impact of Alzheimer-related local amyloid-beta deposits on neural system function to test the hypothesis that plaques are toxic. In APPswe/PS1dE9 (APP/PS1) mice, neurons close to plaques, and dendritic segments close to plaques, both showed diminished fluorescent intensity and therefore neuronal activity. In contrast to wild-type mice, fluorescent intensity in neurons near plaques in transgenic mice did not increase after environmental enrichment. These data indicate that neuronal activity in dendritic segments and neurons in the vicinity of a plaque is decreased compared with wild-type mice, supporting the idea that plaques are a focal lesion leading to impaired neural system function.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Dendritas/genética , Placa Amiloide/genética , Translocación Genética , Enfermedad de Alzheimer/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Genes Reporteros/genética , Ratones , Ratones Transgénicos , Biosíntesis de Proteínas
19.
Front Aging Neurosci ; 12: 265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061903

RESUMEN

Alzheimer's disease (AD) is pathologically defined by extracellular accumulation of amyloid-ß (Aß) peptides generated by the cleavage of amyloid precursor protein (APP), strings of hyperphosphorylated Tau proteins accumulating inside neurons known as neurofibrillary tangles (NFTs) and neuronal loss. The association between the two hallmarks and cognitive decline has been known since the beginning of the 20th century when the first description of the disease was carried out by Alois Alzheimer. Today, more than 40 million people worldwide are affected by AD that represents the most common cause of dementia and there is still no effective treatment available to cure the disease. In general, the aggregation of Aß is considered an essential trigger in AD pathogenesis that gives rise to NFTs, neuronal dysfunction and dementia. During the process leading to AD, tau and Aß first misfold and form aggregates in one brain region, from where they spread to interconnected areas of the brain thereby inducing its gradual morphological and functional deterioration. In this mini-review article, we present an overview of the current literature on the spreading mechanisms of Aß and tau pathology in AD since a more profound understanding is necessary to design therapeutic approaches aimed at preventing or halting disease progression.

20.
Brain Pathol ; 30(1): 36-45, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31099449

RESUMEN

Aggregation of amyloid-ß (Aß) that leads to the formation of plaques in Alzheimer's disease (AD) occurs through the stepwise formation of oligomers and fibrils. An earlier onset of aggregation is obtained upon intracerebral injection of Aß-containing brain homogenate into human APP transgenic mice that follows a prion-like seeding mechanism. Immunoprecipitation of these brain extracts with anti-Aß oligomer antibodies or passive immunization of the recipient animals abrogated the observed seeding activity, although induced Aß deposition was still evident. Here, we establish that, together with Aß monomers, Aß oligomers trigger the initial phase of Aß seeding and that the depletion of oligomeric Aß delays the aggregation process, leading to a transient reduction of seed-induced Aß deposits. This work extends the current knowledge about the role of Aß oligomers beyond its cytotoxic nature by pointing to a role in the initiation of Aß aggregation in vivo. We conclude that Aß oligomers are important for the early initiation phase of the seeding process.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Amiloide/metabolismo , Péptidos beta-Amiloides/fisiología , Animales , Encéfalo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Placa Amiloide/fisiopatología , Agregación Patológica de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA