Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(7): 227, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349907

RESUMEN

Naringenin, a potent antioxidant with anti-apoptotic effects, holds potential in counteracting rotenone-induced neurotoxicity, a model for Parkinson's disease, by reducing oxidative stress and supporting mitochondrial function. Rotenone disrupts ATP production in SH-SY5Y cells through mitochondrial complex-I inhibition, leading to increased reactive oxygen species (ROS) and cellular damage. However, the therapeutic use of naringenin is limited by its poor solubility, low bioavailability, and stability concerns. Nano crystallization of naringenin (NCs), significantly improved its solubility, dissolution rates, and stability for targeted drug delivery. The developed NAR-NC and HSA-NAR-NC formulations exhibit particle sizes of 95.23 nm and 147.89 nm, with zeta potentials of -20.6 mV and -28.5 mV, respectively. These nanocrystals also maintain high drug content and show stability over time, confirming their pharmaceutical viability. In studies using the SH-SY5Y cell line, these modified nanocrystals effectively preserved mitochondrial membrane potential, sustained ATP production, and regulated ROS levels, counteracting the neurotoxic effects of rotenone. Naringenin nanocrystals offer a promising solution for improving the stability and bioavailability of naringenin, with potential therapeutic applications in neurodegenerative diseases.


Asunto(s)
Flavanonas , Potencial de la Membrana Mitocondrial , Mitofagia , Nanopartículas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Rotenona , Humanos , Flavanonas/farmacología , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Rotenona/toxicidad , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitofagia/efectos de los fármacos , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Solubilidad , Fármacos Neuroprotectores/farmacología
2.
AAPS PharmSciTech ; 23(7): 236, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002713

RESUMEN

Piperine (PIP) is a neuroprotective phytomedicine that has profound acetylcholine esterase and reactive oxygen species inhibition effect in Alzheimer's disease (AD) model. However, the oral delivery of PIP is limited by poor aqueous solubility and low bioavailability in systemic circulation. To improve the PIP bioavailability, the polyamidoamine (PAMAM) G4 dendrimer is grafted with tocopheryl polyethylene glycol succinate-1000 (TPGS) through carbodiimide chemistry to form TPGS-PAMAM conjugate. The TPGS-PAMAM coupling was confirmed through proton NMR and FTIR techniques. PIP was encapsulated in the TPGS-PAMAM through solvent diffusion method to form PIP-TPGS-PAMAM. The particle size for PIP-TPGS-PAMAM found the less than 50 nm, whereas entrapment efficiency found to 87 ± 3.5% and 10.6 ± 2.9% drug loading. The powder differential scanning calorimetry and powder X-ray diffraction characterization were employed to evaluate the amorphous encapsulation of the PIP in TPGS-PAMAM. The PIP-TPGS-PAMAM stability was studied in the gastric fluids which showed no drastic difference in particle size and encapsulation efficiency compared to PIP-PAMAM. The in vitro release analysis revealed 37 ± 4.1% PIP release from the PIP-TPGS-PAMAM matrix, and 71 ± 4.9% PIP release from the PIP-PAMAM dendrimer was observed in 48 h. The single-dose oral gavage to Wistar rats of PIP-TPGS-PAMAM showed the AUC0-∞ 14.38 µg/mL.h, Cmax 7.77 ± 1.65 µg/mL, Tmax, 1.6 ± 0.18 h, and half-life 3.47 ± 0.64 h for PIP in systemic circulation. PIP-PAMAM and free PIP showed significantly poor AUC0-∞ compared to PIP-TPGS-PAMAM. The brain uptake studies revealed PIP-TPGS-PAMAM treated group showed 2.2 ± 0.37 µg/g PIP content compared to free PIP administered group which was 0.4 ± 0.10 µg/g. Therefore, PIP-TPGS-PAMAM can offer excellent prospect for the delivery hydrophobic drugs to brain in AD.


Asunto(s)
Dendrímeros , Alcaloides , Animales , Benzodioxoles , Encéfalo , Dendrímeros/química , Portadores de Fármacos/química , Tamaño de la Partícula , Piperidinas , Poliaminas , Polietilenglicoles/química , Alcamidas Poliinsaturadas , Polvos , Ratas , Ratas Wistar , Succinatos , Ácido Succínico , Vitamina E/química
3.
Nanomedicine (Lond) ; 19(21-22): 1743-1760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041671

RESUMEN

Aim: This study focuses on biotinylated nanocarriers designed to encapsulate amphiphilic molecules with self-biodegradable properties for enhanced drug delivery.Methods: Biotin-zein conjugated nanoparticles were synthesized and tested in C6 cell lines to evaluate their viability and cellular uptake. Optimization was achieved using a a central composite design. The nanoparticles underwent thermogravimetric analysis, and their pharmacokinetics and biodistribution were also studied.Results: The optimized nanoparticles displayed 96.31% drug encapsulation efficiency, a particle size of 95.29 nm and a zeta potential of -17.7 mV. These nanoparticles showed increased cytotoxicity and improved cellular uptake compared with free drugs. Thermogravimetric analysis revealed that the drug-loaded nanocarriers provided better protection against drug degradation. Pharmacokinetic and biodistribution studies indicated that the formulation had an extended brain residence time, highlighting its effectiveness.Conclusion: The biotin-zein conjugated nanoparticles developed in this study offer a promising nano-vehicle for in vivo biodistribution and pharmacokinetic applications. Their high drug encapsulation efficiency, stability and extended brain residence time suggest they are effective for targeted drug delivery and therapeutic uses.


[Box: see text].


Asunto(s)
Biotina , Nanopartículas , Tamaño de la Partícula , Zeína , Biotina/química , Biotina/farmacocinética , Animales , Zeína/química , Distribución Tisular , Nanopartículas/química , Portadores de Fármacos/química , Ratas , Humanos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos
4.
Mol Neurobiol ; 61(11): 8702-8738, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38558360

RESUMEN

Blood-brain barrier (BBB) is a distinguishing checkpoint that segregates peripheral organs from neural compartment. It protects the central nervous system from harmful ambush of antigens and pathogens. Owing to such explicit selectivity, the BBB hinders passage of various neuroprotective drug molecules that escalates into poor attainability of neuroprotective agents towards the brain. However, few molecules can surpass the BBB and gain access in the brain parenchyma by exploiting surface transporters and receptors. For successful development of brain-targeted therapy, understanding of BBB transporters and receptors is crucial. This review focuses on the transporter and receptor-based mechanistic pathway that can be manoeuvred for better comprehension of reciprocity of receptors and nanotechnological vehicle delivery. Nanotechnology has emerged as one of the expedient noninvasive approaches for brain targeting via manipulating the hurdle of the BBB. Various nanovehicles are being reported for brain-targeted delivery such as nanoparticles, nanocrystals, nanoemulsion, nanolipid carriers, liposomes and other nanovesicles. Nanotechnology-aided brain targeting can be a strategic approach to circumvent the BBB without altering the inherent nature of the BBB.


Asunto(s)
Barrera Hematoencefálica , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Receptores de Superficie Celular/metabolismo , Transporte Biológico , Nanotecnología/métodos
5.
J Drug Target ; 32(4): 347-364, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38253594

RESUMEN

PRIMARY OBJECTIVE: The primary objective of the review is to assess the potential of lymphatic-targeted drug delivery systems, with a particular emphasis on their role in tumour therapy and vaccination efficacy. REASON FOR LYMPHATIC TARGETING: The lymphatic system's crucial functions in maintaining bodily equilibrium, regulating metabolism, and orchestrating immune responses make it an ideal target for drug delivery. Lymph nodes, being primary sites for tumour metastasis, underscore the importance of targeting the lymphatic system for effective treatment. OUTCOME: Nanotechnologies and innovative biomaterials have facilitated the development of lymphatic-targeted drug carriers, leveraging endogenous macromolecules to enhance drug delivery efficiency. Various systems such as liposomes, micelles, inorganic nanomaterials, hydrogels, and nano-capsules demonstrate significant potential for delivering drugs to the lymphatic system. CONCLUSION: Understanding the physiological functions of the lymphatic system and its involvement in diseases underscores the promise of targeted drug delivery in improving treatment outcomes. The strategic targeting of the lymphatic system presents opportunities to enhance patient prognosis and advance therapeutic interventions across various medical contexts, indicating the importance of ongoing research and development in this area.


Asunto(s)
Vasos Linfáticos , Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Sistema Linfático/metabolismo , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA