Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 292(21): 8933-8947, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28341744

RESUMEN

Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. ß-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G2/M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G2/M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma.


Asunto(s)
Fase G2 , Glioblastoma/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores de Neuroquinina-1/metabolismo , beta-Arrestina 1/metabolismo , Proteína Quinasa CDC2 , Línea Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Neuroquinina-1/genética , beta-Arrestina 1/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
2.
Cell Death Dis ; 14(6): 384, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37385990

RESUMEN

The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.


Asunto(s)
Neoplasias de la Próstata , Receptores de Neuroquinina-1 , Masculino , Humanos , Receptores de Neuroquinina-1/genética , Aurora Quinasa A , Proteínas Proto-Oncogénicas c-myc/genética , Proteína Quinasa C-alfa , Transducción de Señal , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/genética
3.
Cell Death Dis ; 13(1): 41, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013118

RESUMEN

Despite the great advances in target therapy, lung cancer remains the top cause of cancer-related death worldwide. G protein-coupled receptor neurokinin-1 (NK1R) is shown to play multiple roles in various cancers; however, the pathological roles and clinical implication in lung cancer are unclarified. Here we identified NK1R as a significantly upregulated GPCR in the transcriptome and tissue array of human lung cancer samples, associated with advanced clinical stages and poor prognosis. Notably, NK1R is co-expressed with epidermal growth factor receptor (EGFR) in NSCLC patients' tissues and co-localized in the tumor cells. NK1R can crosstalk with EGFR by interacting with EGFR, transactivating EGFR phosphorylation and regulating the intracellular signaling of ERK1/2 and Akt. Activation of NK1R promotes the proliferation, colony formation, EMT, MMP2/14 expression, and migration of lung cancer cells. The inhibition of NK1R by selective antagonist aprepitant repressed cell proliferation and migration in vitro. Knockdown of NK1R significantly slowed down the tumor growth in nude mice. The sensitivity of lung cancer cells to gefitinib/osimertinib is highly increased in the presence of the selective NK1R antagonist aprepitant. Our data suggest that NK1R plays an important role in lung cancer development through EGFR signaling and the crosstalk between NK1R and EGFR may provide a potential therapeutic target for lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores de Neuroquinina-1/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patología , Ratones , Antagonistas del Receptor de Neuroquinina-1/farmacología , Fosforilación , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Neuroquinina-1/genética , Transducción de Señal
4.
Eur J Pharmacol ; 908: 174346, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34270985

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Gefitinib, an inhibitor of EGFR tyrosine kinase, is highly effective in treating NSCLC patients with activating EGFR mutations (L858R or Ex19del). However, despite excellent disease control with gefitinib therapy, innate resistance and inevitable acquired resistance represent immense challenges in NSCLC therapy. Gefitinib potently induces cytoprotective autophagy, which has been implied to contribute to both innate and acquired resistance to gefitinib in NSCLC cells. Currently, abrogation of autophagy is considered a promising strategy for NSCLC therapy. In the present study, YC-1, an inhibitor of HIF-1α, was first found to significantly inhibit the autophagy induced by gefitinib by disrupting the fusion of autophagosomes and lysosomes and thereby enhancing the proapoptotic effect of gefitinib in gefitinib-resistant NSCLC cells. Furthermore, the combinational anti-autophagic and pro-apoptotic effect of gefitinib and YC-1 was demonstrated to be associated with an enhanced of forkhead box protein O1 (FOXO1) transcriptional activity which resulted from an increase in the p-FOXO1 protein level in gefitinib-resistant NSCLC cells. Our data suggest that inhibition of autophagy by targeting FOXO1 may be a feasible therapeutic strategy to overcome both innate and acquired resistance to EGFR-TKIs.


Asunto(s)
Gefitinib , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Humanos , Neoplasias Pulmonares
5.
Eur J Pharmacol ; 874: 172961, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32044322

RESUMEN

The tyrosine kinase inhibitor (TKI) gefitinib exerts good therapeutic effect on NSCLC patients with sensitive EGFR-activating mutations. However, most patients ultimately relapse due to the development of drug resistance after 6-12 months of treatment. Here, we showed that a HIF-1α inhibitor, YC-1, potentiated the antitumor efficacy of gefitinib by promoting EGFR degradation in a panel of human NSCLC cells with wild-type or mutant EGFRs. YC-1 alone had little effect on NSCLC cell survival but significantly enhanced the antigrowth and proapoptotic effects of gefitinib. In insensitive NSCLC cell lines, gefitinib efficiently inhibited the phosphorylation of EGFR but not the downstream signaling of ERK, AKT and STAT3; however, when combined with YC-1 treatment, these signaling pathways were strongly impaired. Gefitinib treatment induced EGFR arrest in the early endosome, and YC-1 treatment promoted delayed EGFR transport into the late endosome as well as receptor degradation. Moreover, the YC-1-induced reduction of HIF-1α protein was associated with the enhancement of EGFR degradation. HIF-1α knockdown promoted EGFR degradation, showing synergistic antigrowth and proapoptotic effects similar to those of the gefitinib and YC-1 combination treatment in NSCLC cells. Our findings provide a novel combination treatment strategy with gefitinib and YC-1 to extend the usage of gefitinib and overcome gefitinib resistance in NSCLC patients.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Gefitinib/farmacología , Indazoles/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Endocitosis/efectos de los fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA