Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 39(37): 13316-13324, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37682809

RESUMEN

The construction of macroscopic chiral luminescent aggregates with well-defined structures not only contributes to the development of functional materials but also has significant implications for analyzing chiral transfer and amplification in biological systems and self-assembly systems. Meanwhile, achieving water-soluble chiral metal nanoclusters (NCs) with high photoluminescence (PL) intensity through a convenient method remains a challenge. Herein, we reported the enhanced luminescence of gold nanoclusters stabilized by D-/L-penicillamine (D-/L-AuNCs) induced by poly(allylamine hydrochloride) (PAH) through supramolecular self-assembly strategies. FT-IR spectra and zeta potential measurements revealed that supramolecular assembly was driven by the synergistic effect of hydrogen bonds and electrostatic interactions, which effectively limited the intramolecular vibration and rotation of the ligand and reduced nonradiative relaxation, thus improving the luminescence properties of nanoclusters. Interestingly, during the slow solvent evaporation process, chiral entanglement of assemblies was enhanced, forming macroscopic wheat-shaped superstructures. This study enriches the understanding of the self-assembly mechanism of nanoclusters and provides a pathway for constructing NC-based chiroptical materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA