Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 531(7592): 105-9, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26863197

RESUMEN

The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.


Asunto(s)
Linaje de la Célula , Tratamiento Basado en Trasplante de Células y Tejidos , Descubrimiento de Drogas/métodos , Sistema Nervioso Entérico/patología , Enfermedad de Hirschsprung/tratamiento farmacológico , Enfermedad de Hirschsprung/patología , Neuronas/patología , Envejecimiento , Animales , Diferenciación Celular , Línea Celular , Movimiento Celular , Separación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Embrión de Pollo , Colon/efectos de los fármacos , Colon/patología , Modelos Animales de Enfermedad , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Enfermedad de Hirschsprung/terapia , Humanos , Masculino , Ratones , Neuronas/efectos de los fármacos , Pepstatinas/metabolismo , Células Madre Pluripotentes/patología , Receptor de Endotelina B/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 106(31): 12759-64, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19549847

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) are generated from somatic cells by ectopic expression of the 4 reprogramming factors (RFs) Oct-4, Sox2, Klf4, and c-Myc. To better define the stoichiometric requirements and dynamic expression patterns required for successful hiPSC induction, we generated 4 bicistronic lentiviral vectors encoding the 4 RFs co-expressed with discernable fluorescent proteins. Using this system, we define the optimal stoichiometry of RF expression to be highly sensitive to Oct4 dosage, and we demonstrate the impact that variations in the relative ratios of RF expression exert on the efficiency of hiPSC induction. Monitoring of expression of each individual RF in single cells during the course of reprogramming revealed that vector silencing follows acquisition of pluripotent cell markers. Pronounced lentiviral vector silencing was a characteristic of successfully reprogrammed hiPSC clones, but lack of complete silencing did not hinder hiPSC induction, maintenance, or directed differentiation. The vector system described here presents a powerful tool for mechanistic studies of reprogramming and the optimization of hiPSC generation.


Asunto(s)
Genes myc/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Células Madre Pluripotentes/citología , Factores de Transcripción SOXB1/fisiología , Diferenciación Celular , Epigénesis Genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética
3.
J Vis Exp ; (109): e53806, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26967464

RESUMEN

Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.


Asunto(s)
Técnicas de Cultivo de Célula , Cresta Neural/citología , Células Madre Pluripotentes/citología , Diferenciación Celular/fisiología , Separación Celular/métodos , Citometría de Flujo/métodos , Humanos
4.
Methods Mol Biol ; 1307: 329-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-24301074

RESUMEN

The neural crest (NC) is a transient population of multipotent cells giving rise to the peripheral nervous system, skin pigmentation, heart, and facial mesenchyme. The broad cell fate potential of NC makes it an attractive cell fate to derive from human pluripotent stem cells (hPSCs) for exploring embryonic development, modeling disease, and generating cells for transplantation. Here, we discuss recent publications and methods for efficiently differentiating hPSCs into NC. We also provide methods to direct NC into two different terminal fates: melanocytes and sensory neurons.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cresta Neural/citología , Células Madre Pluripotentes/citología , Proteínas Smad/antagonistas & inhibidores , Proteínas Wnt/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Humanos , Melanocitos/citología , Ratones , Células Madre Pluripotentes/metabolismo , Células Receptoras Sensoriales/citología , Proteínas Smad/metabolismo
5.
Cell Rep ; 3(4): 1140-52, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23583175

RESUMEN

Melanocytes are pigment-producing cells of neural crest (NC) origin that are responsible for protecting the skin against UV irradiation. Pluripotent stem cell (PSC) technology offers a promising approach for studying human melanocyte development and disease. Here, we report that timed exposure to activators of WNT, BMP, and EDN3 signaling triggers the sequential induction of NC and melanocyte precursor fates under dual-SMAD-inhibition conditions. Using a SOX10::GFP human embryonic stem cell (hESC) reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human NC induction. Subsequent maturation of hESC-derived melanocytes yields pure populations that match the molecular and functional properties of adult melanocytes. Melanocytes from Hermansky-Pudlak syndrome and Chediak-Higashi syndrome patient-specific induced PSCs (iPSCs) faithfully reproduce the ultrastructural features of disease-associated pigmentation defects. Our data define a highly specific requirement for WNT signaling during NC induction and enable the generation of pure populations of human iPSC-derived melanocytes for faithful modeling of pigmentation disorders.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Melanocitos/citología , Modelos Biológicos , Cresta Neural/citología , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Linaje de la Célula , Síndrome de Chediak-Higashi/metabolismo , Síndrome de Chediak-Higashi/patología , Células Madre Embrionarias/metabolismo , Endotelina-3/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Melanocitos/metabolismo , Cresta Neural/metabolismo , Pigmentación , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo
6.
Nat Biotechnol ; 30(7): 715-20, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22750882

RESUMEN

Considerable progress has been made in identifying signaling pathways that direct the differentiation of human pluripotent stem cells (hPSCs) into specialized cell types, including neurons. However, differentiation of hPSCs with extrinsic factors is a slow, step-wise process, mimicking the protracted timing of human development. Using a small-molecule screen, we identified a combination of five small-molecule pathway inhibitors that yield hPSC-derived neurons at >75% efficiency within 10 d of differentiation. The resulting neurons express canonical markers and functional properties of human nociceptors, including tetrodotoxin (TTX)-resistant, SCN10A-dependent sodium currents and response to nociceptive stimuli such as ATP and capsaicin. Neuronal fate acquisition occurs about threefold faster than during in vivo development, suggesting that use of small-molecule pathway inhibitors could become a general strategy for accelerating developmental timing in vitro. The quick and high-efficiency derivation of nociceptors offers unprecedented access to this medically relevant cell type for studies of human pain.


Asunto(s)
Diferenciación Celular , Nociceptores , Células Madre Pluripotentes , Bibliotecas de Moléculas Pequeñas , Acetanilidas/farmacología , Ácidos Cafeicos/farmacología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Línea Celular , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Nociceptores/citología , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Dolor/metabolismo , Dolor/fisiopatología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tetrodotoxina/farmacología
7.
Methods Mol Biol ; 793: 87-97, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21913095

RESUMEN

Human embryonic stem cells (hESCs) and the related induced pluripotent stem cells (hiPSCs) have attracted considerable attention since they can provide an unlimited source of many different tissue types. One challenge of using pluripotent cells is directing their broad differentiation potential into one specific tissue or cell fate. The cell fate choices of extraembryonic, endoderm, mesoderm, and ectoderm (including neural) lineages represent the earliest decisions. We found that pluripotent cells efficiently neuralize by blocking the signaling pathways required for alternative cell fate decisions. In this chapter, we detail methods to direct hESCs or hiPSCs into early neural cells and subsequently postmitotic neurons.


Asunto(s)
Diferenciación Celular , Técnicas Citológicas/métodos , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Animales , Línea Celular , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA