Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Breast Cancer Res ; 23(1): 82, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344433

RESUMEN

BACKGROUND: Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor-stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs. METHODS: MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival. RESULTS: Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated 'omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target. CONCLUSIONS: This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Modelos Biológicos , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/genética , Humanos , Ratones , Terapia Molecular Dirigida , Mutación , Organoides/efectos de los fármacos , Organoides/metabolismo , Fosforilación , Medicina de Precisión , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Hum Reprod ; 35(9): 1991-2003, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32667987

RESUMEN

STUDY QUESTION: Is WNT signalling functional in normal and/or neoplastic human male germ cells? SUMMARY ANSWER: Regulated WNT signalling component synthesis in human testes indicates that WNT pathway function changes during normal spermatogenesis and is active in testicular germ cell tumours (TGCTs), and that WNT pathway blockade may restrict seminoma growth and migration. WHAT IS KNOWN ALREADY: Regulated WNT signalling governs many developmental processes, including those affecting male fertility during early germ cell development at embryonic and adult (spermatogonial) ages in mice. In addition, although many cancers arise from WNT signalling alterations, the functional relevance and WNT pathway components in TGCT, including germ cell neoplasia in situ (GCNIS), are unknown. STUDY DESIGN, SIZE, DURATION: The cellular distribution of transcripts and proteins in WNT signalling pathways was assessed in fixed human testis sections with normal spermatogenesis, GCNIS and seminoma (2-16 individuals per condition). Short-term (1-7 h) ligand activation and long-term (1-5 days) functional outcomes were examined using the well-characterised seminoma cell line, TCam-2. Pathway inhibition used siRNA or chemical exposures over 5 days to assess survival and migration. PARTICIPANTS/MATERIALS, SETTING, METHODS: The cellular localisation of WNT signalling components was determined using in situ hybridisation and immunohistochemistry on Bouin's- and formalin-fixed human testis sections with complete spermatogenesis or germ cell neoplasia, and was also assessed in TCam-2 cells. Pathway function tests included exposure of TCam-2 cells to ligands, small molecules and siRNAs. Outcomes were measured by monitoring beta-catenin (CTNNB1) intracellular localisation, cell counting and gap closure measurements. MAIN RESULTS AND THE ROLE OF CHANCE: Detection of nuclear-localised beta-catenin (CTNNB1), and key WNT signalling components (including WNT3A, AXIN2, TCF7L1 and TCF7L2) indicate dynamic and cell-specific pathway activity in the adult human testis. Their presence in germ cell neoplasia and functional analyses in TCam-2 cells indicate roles for active canonical WNT signalling in TGCT relating to viability and migration. All data were analysed to determine statistical significance. LARGE SCALE DATA: No large-scale datasets were generated in this study. LIMITATIONS, REASONS FOR CAUTION: As TGCTs are rare and morphologically heterogeneous, functional studies in primary cancer cells were not performed. Functional analysis was performed with the only well-characterised, widely accepted seminoma-derived cell line. WIDER IMPLICATIONS OF THE FINDINGS: This study demonstrated the potential sites and involvement of the WNT pathway in human spermatogenesis, revealing similarities with murine testis that suggest the potential for functional conservation during normal spermatogenesis. Evidence that inhibition of canonical WNT signalling leads to loss of viability and migratory activity in seminoma cells suggests that potential treatments using small molecule or siRNA inhibitors may be suitable for patients with metastatic TGCTs. STUDY FUNDING AND COMPETING INTEREST(S): This study was funded by National Health and Medical Research Council of Australia (Project ID 1011340 to K.L.L. and H.E.A., and Fellowship ID 1079646 to K.L.L.) and supported by the Victorian Government's Operational Infrastructure Support Program. None of the authors have any competing interests.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Adulto , Animales , Australia , Humanos , Masculino , Ratones , Neoplasias de Células Germinales y Embrionarias/genética , Espermatogénesis , Neoplasias Testiculares/genética , Testículo , Vía de Señalización Wnt
4.
Cell Mol Gastroenterol Hepatol ; 17(5): 679-685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38342301

RESUMEN

Stromal cell populations have a central role in providing signals that support the maintenance, differentiation, and function of the intestinal epithelium. The behavior and fate of epithelial cells is directed by the spatial organization of stromal cells that either sustain stem and progenitor cell identity or drive differentiation. A combination of single-cell analyses, mouse models, and organoid coculture assays have provided insight into the diversity of signals delivered by stromal cells. Signaling gradients are established and fine-tuned by the expression of signaling agonists and antagonists along the crypt-villus axis. On epithelial injury, there are disruptions to the abundance and organization of stromal populations. There are also distinct changes in the signals originating from these cells that impact remodeling of the epithelium. How these signals coordinate to mediate epithelial repair or sustain tissue injury in inflammatory bowel diseases is beginning to emerge. Understanding of these processes may lead to opportunities to target stromal cell populations as a strategy to modify disease states.


Asunto(s)
Mucosa Intestinal , Intestinos , Animales , Ratones , Mucosa Intestinal/metabolismo , Células Epiteliales/metabolismo , Epitelio , Regeneración
5.
Methods Mol Biol ; 2691: 55-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355537

RESUMEN

Mouse models of intestinal carcinogenesis are very powerful tools for studying the impact of specific mutations on tumor initiation and progression. Mutations can be studied both singularly and in combination using conditional alleles that can be induced in a temporal manner. The steps in intestinal carcinogenesis are complex and can be challenging to image in live animals at a cellular level. The ability to culture intestinal epithelial tissue in three-dimensional organoids in vitro provides an accessible system that can be genetically manipulated and easily visualized to assess specific biological impacts in living tissue. Here, we describe methodology for conditional mutation of genes in organoids from genetically modified mice via induction of Cre recombinase induced by tamoxifen or by transient exposure to TAT-Cre protein and subsequent phenotyping of the organoids. This methodology provides a rapid platform for assessing the cellular changes induced by specific mutations in intestinal tissue.


Asunto(s)
Carcinogénesis , Intestinos , Ratones , Animales , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Mucosa Intestinal , Organoides
6.
Adv Sci (Weinh) ; 8(1): 2002135, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437574

RESUMEN

Organoids are three-dimensional self-renewing and organizing clusters of cells that recapitulate the behavior and functionality of developed organs. Referred to as "organs in a dish," organoids are invaluable biological models for disease modeling or drug screening. Currently, organoid culture commonly relies on an expensive and undefined tumor-derived reconstituted basal membrane which hinders its application in high-throughput screening, regenerative medicine, and diagnostics. Here, we introduce a novel engineered plant-based nanocellulose hydrogel is introduced as a well-defined and low-cost matrix that supports organoid growth. Gels containing 0.1% nanocellulose fibers (99.9% water) are ionically crosslinked and present mechanical properties similar to the standard animal-based matrix. The regulation of the osmotic pressure is performed by a salt-free strategy, offering conditions for cell survival and proliferation. Cellulose nanofibers are functionalized with fibronectin-derived adhesive sites to provide the required microenvironment for small intestinal organoid growth and budding. Comparative transcriptomic profiling reveals a good correlation with transcriptome-wide gene expression pattern between organoids cultured in both materials, while differences are observed in stem cells-specific marker genes. These hydrogels are tunable and can be combined with laminin-1 and supplemented with insulin-like growth factor (IGF-1) to optimize the culture conditions. Nanocellulose hydrogel emerges as a promising matrix for the growth of organoids.

7.
Andrology ; 8(5): 1456-1470, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32441446

RESUMEN

BACKGROUND: Snail transcription factors mediate key cellular transitions in many developmental processes, including spermatogenesis, and their production can be regulated by TGF-ß superfamily signalling. SNAI1 and SNAI2 support many cancers of epithelial origin. Their functional relevance and potential regulation by TGF-ß superfamily ligands in germ cell neoplasia are unknown. METHODS: SNAI1, SNAI2 and importin 5 (IPO5; nuclear transporter that selectively mediates BMP signalling) cellular localization was examined in fixed normal adult human and/or neoplastic testes using in situ hybridization and/or immunohistochemistry. SNAI1 and SNAI2 functions were assessed using the well-characterized human seminoma cell line, TCam-2. Cell migration, adhesion/proliferation and survival were measured by scratch assay, xCELLigence and flow cytometry following siRNA-induced reduction of SNAI1 and SNAI2 in TCam-2 cells. The potential regulation of SNAI1 and SNAI2 in TCam-2 cells by TGF-ß signalling ligands, activin A and BMP4 was evaluated following 48 hours culture, including with siRNA regulation of IPO5 to selectively restrict BMP4 signalling. RESULTS: In normal testes, SNAI1 transcript was identified in some spermatogonia and in spermatocytes, and SNAI2 protein localized to nuclei of spermatogonia, spermatocytes and round spermatids. In neoplastic testes, both SNAI1 and SNAI2 were detected in GCNIS and in seminoma cells. SNAI1 and SNAI2 reduction in TCam-2 cells by siRNAs significantly inhibited migration and survival, respectively. Exposure to BMP4, but not activin A, significantly increased SNAI2 (~18-fold). IPO5 inhibition by siRNAs decreased BMP4-induced SNAI2 upregulation (~5-fold). Additionally, SNAI2 reduction using siRNAs inhibited BMP4-induced TCam-2 cell survival. CONCLUSIONS: This is the first evidence that SNAI1 and SNAI2 are involved in human spermatogenesis, with independent functions. These outcomes demonstrate that SNAI1 and SNAI2 inhibition leads to loss of migratory and viability capacities in seminoma cells. These findings show the potential for therapeutic treatments targeting SNAIL or BMP4 signalling for patients with metastatic testicular germ cell tumours.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Neoplasias de Células Germinales y Embrionarias/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias Testiculares/metabolismo , Proteína Morfogenética Ósea 4/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/genética , Transducción de Señal/fisiología , Factores de Transcripción de la Familia Snail/genética , Espermatogénesis/fisiología , Neoplasias Testiculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA