RESUMEN
BACKGROUND: Reports of dual carriers of pathogenic BRCA1 variants in trans are extremely rare, and so far, most individuals have been associated with a Fanconi Anemia-like phenotype. METHODS: We identified two families with a BRCA1 in-frame exon 20 duplication (Ex20dup). In one male individual, the variant was in trans with the BRCA1 frameshift variant c.2475delC p.(Asp825Glufs*21). We performed splicing analysis and used a transcription activation domain (TAD) assay to assess the functional impact of Ex20dup. We collected pedigrees and mapped the breakpoints of the duplication by long- and short-read genome sequencing. In addition, we performed a mitomycin C (MMC) assay from the dual carrier using cultured lymphoblastoid cells. RESULTS: Genome sequencing and RNA analysis revealed the BRCA1 exon 20 duplication to be in tandem. The duplication was expressed without skipping any one of the two exon 20 copies, resulting in a lack of wild-type transcripts from this allele. TAD assay indicated that the Ex20dup variant has a functional level similar to the well-known moderate penetrant pathogenic BRCA1 variant c.5096G > A p.(Arg1699Gln). MMC assay of the dual carrier indicated a slightly impaired chromosomal repair ability. CONCLUSIONS: This is the first reported case where two BRCA1 variants with demonstrated functional impact are identified in trans in a male patient with an apparently normal clinical phenotype and no BRCA1-associated cancer. The results pinpoint a minimum necessary BRCA1 protein activity to avoid a Fanconi Anemia-like phenotype in compound heterozygous status and yet still predispose carriers to hormone-related cancers. These findings urge caution when counseling families regarding potential Fanconi Anemia risk. Furthermore, prudence should be taken when classifying individual variants as benign based on co-occurrence in trans with well-established pathogenic variants.
Asunto(s)
Neoplasias de la Mama , Anemia de Fanconi , Humanos , Masculino , Proteína BRCA1/genética , Exones/genética , Anemia de Fanconi/genética , Mitomicina , FenotipoRESUMEN
OBJECTIVE: This study aimed to assess the diagnostic yield of prenatal genetic testing using trio whole exome sequencing (WES) and trio whole genome sequencing (WGS) in pregnancies with fetal anomalies by comparing the results with conventional chromosomal microarray (CMA) analysis. METHODS: A total of 40 pregnancies with fetal anomalies or increased nuchal translucency (NT ≥ 5 mm) were included between the 12th and 21st week of gestation. Trio WES/WGS and CMA were performed in all cases. RESULTS: The trio WES/WGS analysis increased the diagnostic yield by 25% in cases with negative CMA results. Furthermore, all six chromosomal aberrations identified by CMA were independently detected by WES/WGS analysis. In total, 16 out of 40 cases obtained a genetic sequence variant, copy number variant, or aneuploidy explaining the phenotype, resulting in an overall WES/WGS diagnostic yield of 40%. WES analysis provided a more reliable identification of mosaic sequence variants than WGS because of its higher sequencing depth. CONCLUSIONS: Prenatal WES/WGS proved to be powerful diagnostic tools for fetal anomalies, surpassing the diagnostic yield of CMA. They have the potential to serve as standalone methods for prenatal diagnosis. The study highlighted the limitations of WGS in accurately detecting mosaic variants, which is particularly relevant when analyzing chorionic villus samples.
Asunto(s)
Secuenciación del Exoma , Diagnóstico Prenatal , Secuenciación Completa del Genoma , Femenino , Humanos , Embarazo , Diagnóstico Prenatal/métodos , Secuenciación Completa del Genoma/normas , Secuenciación del Exoma/normas , Análisis por Micromatrices/normas , Anomalías Congénitas/genética , Variación Genética/genéticaAsunto(s)
Secuenciación del Exoma , Enfermedades Fetales , Pruebas Genéticas , Diagnóstico Prenatal , Femenino , Humanos , Embarazo , Secuenciación del Exoma/métodos , Feto/diagnóstico por imagen , Diagnóstico Prenatal/métodos , Ultrasonografía Prenatal , Enfermedades Fetales/genética , Pruebas Genéticas/métodosRESUMEN
Early infantile epileptic encephalopathy 38 (EIEE38, MIM #617020) is caused by biallelic variants in ARV1, encoding a transmembrane protein of the endoplasmic reticulum with a pivotal role in glycosylphosphatidylinositol (GPI) biosynthesis. We ascertained seven new patients from six unrelated families harboring biallelic variants in ARV1, including five novel variants. Affected individuals showed psychomotor delay, hypotonia, early onset refractory seizures followed by regression and specific neuroimaging features. Flow cytometric analysis on patient fibroblasts showed a decrease in GPI-anchored proteins on the cell surface, supporting a lower residual activity of the mutant ARV1 as compared to the wildtype. A rescue assay through the transduction of lentivirus expressing wild type ARV1 cDNA effectively rescued these alterations. This study expands the clinical and molecular spectrum of the ARV1-related encephalopathy, confirming the essential role of ARV1 in GPI biosynthesis and brain function.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/deficiencia , Fenotipo , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Alelos , Sustitución de Aminoácidos , Encéfalo/anomalías , Proteínas Portadoras/genética , Análisis Mutacional de ADN , Facies , Femenino , Proteínas Ligadas a GPI/biosíntesis , Estudios de Asociación Genética/métodos , Glicosilfosfatidilinositoles/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/genética , Mutación , Linaje , Embarazo , Diagnóstico Prenatal/métodos , Espasmos Infantiles/metabolismoRESUMEN
BACKGROUND: Sufficient fetal fraction (FF) is crucial for quality control of NIPT (Non-Invasive Prenatal Test) results. Different factors influencing bioinformatic estimation of FF should be considered when implementing NIPT. To what extent the total number of sequencing reads influences FF estimate has been unexplored. In this study, to test the robustness of SeqFF FF estimation and provide additional recommendations for NIPT analysis quality control, we compared the SeqFF FF estimates with two other methods and investigated how the number of sequencing reads and FF level affects the accuracy and precision of FF estimates. METHODS: WGS data of 516 NIPT samples from a prenatal screening program was obtained. Sample data were randomly downsampled by the read count, and FF was calculated by SeqFF software. Then, the outcome was compared with FF estimates from SNP- and chrY-based methods. FF estimated with different read counts and FF levels were compared with FF at 30 M reads as a reference. RESULTS: SeqFF FF highly correlates with SNP- and chrY-based FF estimates. Raising read count from 2 M to 10 M drastically increased the accuracy of FF estimates. After adding more reads, we saw a further improvement in FF accuracy, reaching a plateau at 20 M reads. Precision of SeqFF FF estimate is independent of FF level in the sample. CONCLUSION: SeqFF is a robust method for FF estimation for both genders and for any FF level in range 2-13%. Accuracy of FF estimates highly depends on the read count. We recommend using no less than 10 M reads to achieve accurate FF estimates for NIPT analysis in clinical settings.
Asunto(s)
Pruebas Prenatales no Invasivas/métodos , Secuenciación Completa del Genoma/métodos , Ácidos Nucleicos Libres de Células/genética , Cromosomas Humanos Y/genética , Exactitud de los Datos , Femenino , Humanos , Pruebas Prenatales no Invasivas/normas , Polimorfismo de Nucleótido Simple , Embarazo , Reproducibilidad de los Resultados , Secuenciación Completa del Genoma/normasRESUMEN
We describe two clinical prenatal cases with rare de novo RIT1 variants, which showed more severe clinical manifestations than other Noonan Syndrome genotypes, resulting in fetal death. Extra attention is recommended when these variants are detected.
RESUMEN
BACKGROUND: Patients with germline variants in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and Hereditary Hemorrhagic Telangiectasia (HHT): JP-HHT syndrome. Next-Generation Sequencing (NGS) techniques disclose causative sequence variants in around 90% of HHT patients fulfilling the Curaçao criteria. Here we report a translocation event involving SMAD4 resulting in JP-HHT. METHODS: A patient fulfilling the Curaçao criteria was analyzed for variants in ENG, ACVRL1, and SMAD4 using standard techniques. Whole-genome sequencing (WGS) using both short-read NGS technology and long-read Oxford Nanopore technology was performed to define the structural variant and exact breakpoints. RESULTS: No pathogenic variant was detected in ENG, ACVRL1, or SMAD4 in DNA extracted from blood. Due to abortus habitualis, the proband´s daughter was submitted for chromosomal analysis, and a cytogenetically balanced chromosomal reciprocal translocation t(1;18)(p36.1;q21.1) was detected in the daughter and the patient. The balanced translocation segregated with both gastrointestinal cancer and HHT in the family. WGS provided the exact breakpoints of the reciprocal translocation proving disruption of the SMAD4 gene. DISCUSSION: A disease-causing reciprocal translocation between chromosome 1 and 18 with a breakpoint in the SMAD4 locus co-segregated with JP-HHT in an extended family. This observation warrants further analysis for chromosomal rearrangements in individuals with clinical HHT or JP-HHT of unknown cause.