Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(34): E3534-43, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114248

RESUMEN

Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Epigénesis Genética , Proteína de Unión a los Ácidos Grasos 7 , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Pruebas Genéticas , Humanos , Linfoma de Células B Grandes Difuso/etiología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Retroelementos/genética , Secuencias Repetidas Terminales , Análisis de Matrices Tisulares , Activación Transcripcional
2.
PLoS Genet ; 7(9): e1002301, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21980304

RESUMEN

The "arms race" relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE-induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness.


Asunto(s)
Epigénesis Genética/genética , Glicosiltransferasas/genética , Heterocromatina/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Mutagénesis Insercional/genética , Retroelementos/genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Silenciador del Gen , Glicosiltransferasas/metabolismo , Heterocromatina/genética , Ratones , Polimorfismo Genético
3.
Genome Biol ; 13(10): R89, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23034137

RESUMEN

BACKGROUND: Transposable elements are often the targets of repressive epigenetic modifications such as DNA methylation that, in theory, have the potential to spread toward nearby genes and induce epigenetic silencing. To better understand the role of DNA methylation in the relationship between transposable elements and genes, we assessed the methylation state of mouse endogenous retroviruses (ERVs) located near genes. RESULTS: We found that ERVs of the ETn/MusD family show decreased DNA methylation when near transcription start sites in tissues where the nearby gene is expressed. ERVs belonging to the IAP family, however, are generally heavily methylated, regardless of the genomic environment and the tissue studied. Furthermore, we found full-length ETn and IAP copies that display differential DNA methylation between their two long terminal repeats (LTRs), suggesting that the environment surrounding gene promoters can prevent methylation of the nearby LTR. Spreading from methylated ERV copies to nearby genes was rarely observed, with the regions between the ERVs and genes apparently acting as a boundary, enriched in H3K4me3 and CTCF, which possibly protects the unmethylated gene promoter. Furthermore, the flanking regions of unmethylated ERV copies harbor H3K4me3, consistent with spreading of euchromatin from the host gene toward ERV insertions. CONCLUSIONS: We have shown that spreading of DNA methylation from ERV copies toward active gene promoters is rare. We provide evidence that genes can be protected from ERV-induced heterochromatin spreading by either blocking the invasion of repressive marks or by spreading euchromatin toward the ERV copy.


Asunto(s)
Metilación de ADN , Retrovirus Endógenos/genética , Secuencias Repetidas Terminales , Animales , Cromatina/metabolismo , ADN Viral/genética , Epigénesis Genética , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA