Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(49): 22641-22650, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36451553

RESUMEN

Paired electrolysis methods are appealing for chemical synthesis because they generate valuable products at both electrodes; however, development of such reactions is complicated by the need for both half-reactions to proceed under mutually compatible conditions. Here, a modular electrochemical synthesis (ModES) strategy bypasses these constraints using a "redox reservoir" (RR) to pair electrochemical half-reactions across aqueous and nonaqueous solvents. Electrochemical oxidation reactions in organic solvents, the conversion of 4-t-butyltoluene to benzylic dimethyl acetal and aldehyde in methanol or the oxidative C-H amination of naphthalene in acetonitrile, and the reduction of oxygen to hydrogen peroxide in water were paired using nickel hexacyanoferrate as an RR that can selectively store and release protons (and electrons) while serving as the counter electrode for these reactions. Selective proton transport through the RR is optimized and confirmed to enable the ion balance, and thus the successful pairing, between redox half-reactions that proceed with different rates, on different scales, and in different solvents (methanol, acetonitrile, and water).


Asunto(s)
Metanol , Agua , Oxidación-Reducción , Electrodos , Solventes , Protones , Acetonitrilos
2.
Top Catal ; 61(7-8): 704-709, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30288016

RESUMEN

Carbon fiber-reinforced polymer (CFRP) materials are widely used in aerospace and recreational equipment, but there is no efficient procedure for their end-of-life recycling. Ongoing work in the chemistry and engineering communities emphasizes recovering carbon fibers from such waste streams by dissolving or destroying the polymer binding. By contrast, our goal is to depolymerize amine-cured epoxy CFRP composites catalytically, thus enabling not only isolation of high-value carbon fibers, but simultaneously opening an approach to recovery of small molecule monomers that can be used to regenerate precursors to new composite resin. To do so will require understanding of the molecular mechanism(s) of such degradation sequences. Prior work has shown the utility of hydrogen peroxide as a reagent to affect epoxy matrix decomposition [1]. Herein we describe the chemical transformations involved in that sequence: the reaction proceeds by oxygen atom transfer to the polymer's linking aniline group, forming an N-oxide intermediate. The polymer is then cleaved by an elimination and hydrolysis sequence. We find that elimination is the slower step. Scandium trichloride is an efficient catalyst for this step, reducing reaction time in homogeneous model systems and neat cured matrix blocks. The conditions can be applied to composed composite materials, from which pristine carbon fibers can be recovered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA