Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Soc Cogn Affect Neurosci ; 19(1)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38850226

RESUMEN

The smell of the own baby is a salient cue for human kin recognition and bonding. We hypothesized that infant body odors function like other cues of the Kindchenschema by recruiting neural circuits of pleasure and reward. In two functional magnetic resonance imaging studies, we presented infantile and post-pubertal body odors to nulliparae and mothers (N = 78). All body odors increased blood-oxygen-level-dependent (BOLD) response and functional connectivity in circuits related to olfactory perception, pleasure and reward. Neural activation strength in pleasure and reward areas positively correlated with perceptual ratings across all participants. Compared to body odor of post-pubertal children, infant body odors specifically enhanced BOLD signal and functional connectivity in reward and pleasure circuits, suggesting that infantile body odors prime the brain for prosocial interaction. This supports the idea that infant body odors are part of the Kindchenschema. The additional observation of functional connectivity being related to maternal and kin state speaks for experience-dependent priming.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Odorantes , Olfato , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Masculino , Lactante , Adulto , Olfato/fisiología , Encéfalo/fisiología , Percepción Olfatoria/fisiología , Mapeo Encefálico/métodos , Oxígeno/sangre , Adulto Joven , Niño , Recompensa , Placer/fisiología
2.
J Vis Exp ; (181)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35389978

RESUMEN

Primary cilia (PC) are non-motile dynamic microtubule-based organelles that protrude from the surface of most mammalian cells. They emerge from the older centriole during the G1/G0 phase of the cell cycle, while they disassemble as the cells re-enter the cell cycle at the G2/M phase boundary. They function as signal hubs, by detecting and transducing extracellular signals crucial for many cell processes. Similar to most cell types, all neocortical neural stem and progenitor cells (NSPCs) have been shown harboring a PC allowing them to sense and transduce specific signals required for the normal cerebral cortical development. Here, we provide detailed protocols to generate and characterize two-dimensional (2D) and three-dimensional (3D) cell-based models from human induced pluripotent stem cells (hIPSCs) to further dissect the involvement of PC during neocortical development. In particular, we present protocols to study the PC biogenesis and function in 2D neural rosette-derived NSPCs including the transduction of the Sonic Hedgehog (SHH) pathway. To take advantage of the three-dimensional (3D) organization of cerebral organoids, we describe a simple method for 3D imaging of in toto immunostained cerebral organoids. After optical clearing, rapid acquisition of entire organoids allows detection of both centrosomes and PC on neocortical progenitors and neurons of the whole organoid. Finally, we detail the procedure for immunostaining and clearing of thick free-floating organoid sections preserving a significant degree of 3D spatial information and allowing for the high-resolution acquisition required for the detailed qualitative and quantitative analysis of PC biogenesis and function.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neocórtex , Animales , Diferenciación Celular/fisiología , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Mamíferos/metabolismo , Organoides/metabolismo
3.
Stem Cell Res ; 48: 101959, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32866896

RESUMEN

Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. They are also highly valuable as tools to study development and pathologies or as cellular substrates to screen and test new drugs. We generated human induced pluripotent stem cell (hiPSC) lines from two unrelated healthy control donors. Peripheral blood mononuclear cells (PBMCs) from these donors were reprogrammed by non-integrative viral transduction, had normal karyotypes and expressed pluripotency hallmarks.


Asunto(s)
Células Madre Pluripotentes Inducidas , Línea Celular , Humanos , Leucocitos Mononucleares , Medicina Regenerativa
4.
Nat Commun ; 10(1): 4357, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554807

RESUMEN

Cell therapy products (CTP) derived from pluripotent stem cells (iPSCs) may constitute a renewable, specifically differentiated source of cells to potentially cure patients with neurodegenerative disorders. However, the immunogenicity of CTP remains a major issue for therapeutic approaches based on transplantation of non-autologous stem cell-derived neural grafts. Despite its considerable side-effects, long-term immunosuppression, appears indispensable to mitigate neuro-inflammation and prevent rejection of allogeneic CTP. Matching iPSC donors' and patients' HLA haplotypes has been proposed as a way to access CTP with enhanced immunological compatibility, ultimately reducing the need for immunosuppression. In the present work, we challenge this paradigm by grafting autologous, MHC-matched and mis-matched neuronal grafts in a primate model of Huntington's disease. Unlike previous reports in unlesioned hosts, we show that in the absence of immunosuppression MHC matching alone is insufficient to grant long-term survival of neuronal grafts in the lesioned brain.


Asunto(s)
Rechazo de Injerto/inmunología , Enfermedad de Huntington/terapia , Células Madre Pluripotentes Inducidas/trasplante , Complejo Mayor de Histocompatibilidad/inmunología , Neuronas/trasplante , Animales , Diferenciación Celular/inmunología , Citotoxicidad Inmunológica/inmunología , Modelos Animales de Enfermedad , Prueba de Histocompatibilidad , Humanos , Enfermedad de Huntington/inmunología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Neuronas/citología , Neuronas/inmunología , Primates , Ratas Desnudas , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA