Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 212: 118073, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091219

RESUMEN

The demand for natural gas has led to the development of techniques used to access unconventional oil and natural gas (UOG) resources, due to the novelty of UOG, the potential impacts to freshwater ecosystems are not fully understood. We used a dual pronged approach to study the effects of UOG development on microbial biodiversity and function via a laboratory microcosm experiment and a survey study of streams with and without UOG development within their watersheds. The microcosm experiment simulated stream contamination with produced water, a byproduct of UOG operations, using sediment collected from one high water-quality stream and two low water-quality streams. For the survey study, biofilm and sediment samples were collected from streams experiencing varying levels of UOG development. In the microcosm experiment, produced water decreased microbial aerobic and anaerobic CO2 production in the high water-quality stream sediment but had a positive effect on this microbial activity in the lower water-quality stream sediments, suggesting habitat degradation alters the response of microbes to contaminants. Results from the stream survey indicate UOG development alters stream water temperature, chemistry, sediment aerobic and anaerobic CO2 production, and microbial community biodiversity in both sediments and biofilms. Correlations among UOG associated land use, environmental, and microbial variables suggest increases in light availability and sediment delivery to streams, due to deforestation and land disturbance, impact stream microbial communities and their function. Consistent changes in the relative abundance of bacterial taxa suggest microorganisms may be good indicators of the environmental changes associated with UOG development. The observed impacts of UOG development on microbial community composition and carbon cycling could have cascading effects on stream health and broader ecosystem function.


Asunto(s)
Microbiota , Ríos , Bacterias , Ecosistema , Gas Natural , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA