Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3992-4000, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38294407

RESUMEN

Zinc porphene is a two-dimensional material made of fully fused zinc porphyrins in a tetragonal lattice. It has a fully conjugated π-system, making it similar to graphene. Zinc porphene has recently been synthesized, and a combination of rough conductivity measurements and infrared and Raman spectroscopies all suggested that it is a semiconductor (Magnera, T.F. et al. Porphene and Porphite as Porphyrin Analogs of Graphene and Graphite, Nat. Commun.2023, 14, 6308). This is in contrast with all previous predictions of its electronic structure, which indicated metallic conductivity. We show that the gap-opening in zinc porphene is caused by a Peierls distortion of its unit cell from square to rectangular, thus giving the first account of its electronic structure in agreement with the experiment. Accounting for this distortion requires proper treatment of electron delocalization, which can be done using hybrid functionals with a substantial amount of exact exchange. Such a functional, PBE38, is then applied to predict the properties of many first transition row metalloporphenes, some of which have already been prepared. We find that changing the metal strongly affects the electronic structure of metalloporphenes, resulting in a rich variety of both metallic conductors and semiconductors, which may be of great interest to molecular electronics and spintronics. Properties of these materials are mostly governed by the extent of the Peierls distortion and the number of electrons in their π-system, analogous to changes in aromaticity observed in cyclic conjugated molecules upon oxidation or reduction. These results give an account of how the concept of antiaromaticity can be extended to periodic systems.

2.
Langmuir ; 40(5): 2562-2566, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38276954

RESUMEN

An electrochemical Langmuir-Blodgett trough that permits an examination of local redox processes in a layer floating on the surface of water with a scanning tunneling microscopy-tip ultramicroelectrode has been constructed and tested on a layer of 1,1'-dicarbooctadecyloxyferrocene.

3.
Inorg Chem ; 63(22): 10127-10142, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38770816

RESUMEN

Relativistic restricted active space (RAS) second-order multireference perturbation theory (MRPT2) methods, incorporating spin-orbit (SO) coupling perturbatively via state interaction (SO-MRPT2/RASSCF), were used to reproduce the absorption spectra of parent metalloporphyrins containing the Mg2+, Zn2+, Co2+, Ni2+, Cu2+, or FeCl2+ ions in the 12,500-40,000 cm-1 region. Particular attention was paid to the interaction between the porphyrin ring and the metal 3d electrons in states of different multiplicities (we used metal 3d and double d-shell or 3d' orbitals). For this class of compounds, the N-electron valence state perturbation theory (NEVPT2) method is superior to the complete active space perturbation theory (CASPT2) and successfully reproduces the energies of all four characteristic transitions (Q, B, N, and L) of closed-shell metalloporphyrins. Inclusion of SO coupling was found to have very little effect on excitation energies and oscillator strengths. For FeCl2+ porphyrin, we treated ligand-to-metal charge-transfer (LMCT; π,d), metal ligand field (d,d), and metal-to-ligand charge-transfer (MLCT; d,π*) transitions within the same framework. The broad and intense spectral features associated with its B (Soret) band are attributed to multiconfigurational LMCT (d,π*) bands involving strong metal-ligand orbital mixing.

4.
Acc Chem Res ; 55(11): 1561-1572, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35604637

RESUMEN

Symmetry breaking charge transfer (SBCT) is a process in which a pair of identical chromophores absorb a photon and use its energy to transfer an electron from one chromophore to the other, breaking the symmetry of the chromophore pair. This excited state phenomenon is observed in photosynthetic organisms where it enables efficient formation of separated charges that ultimately catalyze biosynthesis. SBCT has also been proposed as a means for developing photovoltaics and photocatalytic systems that operate with minimal energy loss. It is known that SBCT in both biological and artificial systems is in part made possible by the local environment in which it occurs, which can move to stabilize the asymmetric SBCT state. However, how environmental degrees of freedom act in concert with steric and structural constraints placed on a chromophore pair to dictate its ability to generate long-lived charge pairs via SBCT remain open topics of investigation.In this Account, we compare a broad series of dipyrrin dimers that are linked by distinct bridging groups to discern how the spatial separation and mutual orientation of linked chromophores and the structural flexibility of their linker each impact SBCT efficiency. Across this material set, we observe a general trend that SBCT is accelerated as the spatial separation between dimer chromophores decreases, consistent with the expectation that the electronic coupling between these units varies exponentially with their separation. However, one key observation is that the rate of charge recombination following SBCT was found to slow with decreasing interchromophore separation, rather than speed up. This stems from an enhancement of the dimer's structural rigidity due to increasing steric repulsion as the length of their linker shrinks. This rigidity further inhibits charge recombination in systems where symmetry has already enforced zero HOMO-LUMO overlap. Additionally, for the forward transfer, the active torsion is shown to increase LUMO-LUMO coupling, allowing for faster SBCT within bridging groups.By understanding trends for how rates of SBCT and charge recombination depend on a dimer's internal structure and its environment, we identify design guidelines for creating artificial systems for driving sustained light-induced charge separation. Such systems can find application in solar energy technologies and photocatalytic applications and can serve as a model for light-induced charge separation in biological systems.


Asunto(s)
Fotosíntesis , Energía Solar , Compuestos de Boro , Catálisis , Luz Solar
5.
J Org Chem ; 88(11): 6573-6587, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37219972

RESUMEN

Three symmetrically and three unsymmetrically substituted cibalackrot (7,14-diphenyldiindolo[3,2,1-de:3',2',1'-ij][1,5]naphthyridine-6,13-dione, 1) dyes carrying two derivatized phenyl rings have been synthesized as candidates for molecular electronics and especially for singlet fission, a process of interest for solar energy conversion. Solution measurements provided singlet and triplet excitation energies and fluorescence yields and lifetimes; conformational properties were analyzed computationally. The molecular properties are close to ideal for singlet fission. However, crystal structures, obtained by single-crystal X-ray diffraction (XRD), are rather similar to those of the polymorphs of solid 1, in which the formation of a charge-separated state followed by intersystem crossing, complemented with excimer formation, outcompetes singlet fission. Results of calculations by the approximate SIMPLE method suggest which ones among the solid derivatives are the best candidates for singlet fission, but it appears difficult to change the crystal packing in a desirable direction. We also describe the preparation of three specifically deuteriated versions of 1, expected to help sort out the mechanism of fast intersystem crossing in its charge-separated state.

6.
J Am Chem Soc ; 144(1): 463-477, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34964638

RESUMEN

Observations and computations both suggest that the extent and the conformational dependence of σ-electron delocalization in frontier molecular orbitals are quite different in alkanes CnH2n+2 and oligosilanes SinH2n+2, the isosteric and isoelectronic saturated chains built from carbon or silicon atoms, respectively. We find that the different conformational effects can be understood in simple intuitive terms. There are two modes of σ-electron delocalization, strongly conformation-sensitive skeletal delocalization through backbone X-X bonds (σ-conjugation and σ-hyperconjugation) and only weakly conformation-sensitive lateral delocalization through lateral X-H bonds (σ-hyperconjugation and σ-homoconjugation). In alkanes, both modes are active and complement each other, leading to delocalization in all conformations. In oligosilanes, only skeletal delocalization of holes is important in frontier orbitals, and the even simpler ladder C model provides an adequate intuitive description of the strong conformational dependence of σ-electron delocalization. Ultimately, the difference is primarily due to the similar electronegativity of carbon and hydrogen as opposed to the lower electronegativity of silicon, which causes a polarization of Si-H bonds. This understanding has been derived from an analysis of approximate algebraic solutions of a simple Hückel-level extended ladder H model for an infinite regular helical chain, using the effective mass of a hole as a measure of delocalization. This model is derived from the classical Sandorfy H model, and is parametrized by fitting to results of density functional or Hartree-Fock theory.

7.
Proc Natl Acad Sci U S A ; 115(38): 9373-9378, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29572428

RESUMEN

In situ grazing-incidence X-ray scattering shows that a monolayer of artificial rod-shaped dipolar molecular rotors produced on the surface of an aqueous subphase in a Langmuir trough has a structure conducive to a 2D ferroelectric phase. The axes of the rotors stand an average of 0.83 nm apart in a triangular grid, perpendicular to the surface within experimental error. They carry 2,3-dichlorophenylene rotators near rod centers, between two decks of interlocked triptycenes installed axially on the rotor axle. The analysis is based first on simultaneous fitting of observed Bragg rods and second on fitting the reflectivity curve with only three adjustable parameters and the calculated rotor electron density, which also revealed the presence of about seven molecules of water near each rotator. Dependent on preparation conditions, a minor and variable amount of a different crystal phase may also be present in the monolayer.

8.
Inorg Chem ; 59(17): 12453-12460, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845135

RESUMEN

Starting with HOOC-CB11Me11- or CB11Me12- as the starting material, collision-induced dissociation has produced a series of methylated analogs of didehydro-closo-carbadodecaborane anions by sequential losses of up to 5 equiv of ethylene. These reactive intermediates are carborane analogues of doubly pyramidalized alkenes and, more distantly, arynes. Density functional theory calculations have been used to develop a proposal for the mechanism of the unusual formation of ethylene from the carborane methyl substituents.

9.
J Am Chem Soc ; 141(33): 13101-13113, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31306578

RESUMEN

An intuitive explanation of the effects of conformation (backbone dihedral angle) on electron delocalization in infinite saturated regular helices [(CH3)2]∞Si, [(CH3)2Ge]∞, [(CH3)2Sn]∞, and [(CH3)2Pb]∞ is offered in terms of the simple Ladder C model and confirmed by density functional theory calculations. The effective hole mass, which ranges from near zero to infinity as a function of conformation, is used as a measure of the degree of delocalization and relates to the effects of chain length extension in finite systems. The position of the Fermi level in reciprocal space has a simple counterpart in systems of finite length and is used to characterize the dominant mechanism, σ conjugation (geminal interactions) or σ hyperconjugation (vicinal interactions, through-bond coupling). Constructive or destructive interference of the two mechanisms produces three different delocalization regimes as a function of the backbone dihedral angle and analogy is drawn to polycyclic π-electron systems consisting of fused Hückel or Möbius four-membered rings.

10.
J Am Chem Soc ; 141(44): 17729-17743, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31509712

RESUMEN

A procedure is described for unbiased identification of all π-electron chromophore pair geometry choices that locally maximize the rate of conversion of a singlet exciton into a singlet biexciton (triplet pair), using a simplified version of the diabatic frontier orbital model of singlet fission (SF). The resulting approximate optimal geometries provide insight and are expected to represent useful starting points for searches by more advanced methods. The general procedure is illustrated on a pair of ethylenes as the simplest model of a π-electron system, but it is applicable to pairs of much larger molecules, with dozens of non-hydrogen atoms, and not necessarily planar. We first examine the value of |TA|2, the square of the electronic matrix element for SF with initial excitation fully localized on partner A, on a grid of several billion geometries within the six-dimensional space of physically realizable possibilities. Several of the optimized pair geometries are somewhat unexpected, but all are found to follow the qualitative guidance proposed earlier. In the neighborhood of each local maximum of |TA|2, consideration of mixing with charge-transfer configurations and of excitonic interaction between partners A and B determines the SF energy balance and yields squared matrix elements |T*|2 and |T**|2 for the lower and upper excitonic states S* and S**, respectively. Assuming Boltzmann populations of these states, the geometry is further optimized to maximize k, the sum of the SF rates obtained from Marcus theory, and this reorders the suitable geometries substantially. At 87 pair geometries, the |T*|2 and |T**|2 values are compared with those obtained from high-level ab initio nonorthogonal configuration interaction calculations and found to follow the same trend. Finally, the biexciton binding energy at the optimized geometries is calculated. Altogether, 13 significant local maxima of SF rate for a pair of ethylenes are identified in the physically relevant part of space that avoids molecular interpenetration in the hard-sphere approximation. The three best geometries are twist-stacked, slip-stacked, and L-shaped. The maxima occur at the (five-dimensional) surfaces of seven six-dimensional "parent" regions of space centered at physically inaccessible geometries at which the calculated SF rate is very large but the two ethylenes interpenetrate. The results are displayed in interactive graphics. The computer code ("Simple") written for these calculations is flexible in that it permits a choice of performing the search for local maxima in six dimensions on |TA|2, |T*|2, or k. It is available as freeware at https://cloud.uochb.cas.cz/simple .

11.
J Org Chem ; 84(5): 2448-2461, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675778

RESUMEN

Radical chlorination of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid is highly selective, and up to four chlorine atoms can be introduced relatively easily without damage to the strained bicyclic cage. Combined with hydrodechlorination with TMS3SiH, direct chlorination provides access to five of the 15 possible chlorinated diacids. Their configuration has been established by X-ray diffraction. Their p Ka values have been measured by capillary electrophoresis and calculated at the B3LYP-D3BJ/6-311+G(d,p)-level. The results are in good agreement and reflect the expected trend, from 2.78 ± 0.08 and 4.14 ± 0.10 in the parent to 1.07 ± 0.03 and 2.31 ± 0.03 in the tetrachlorinated diacid. Strain energy relative to the parent diacid was calculated for all 15 chlorinated diacids and shows a dramatic increase with successive chlorination, due to nonbonded Cl-Cl repulsions.

12.
J Org Chem ; 84(13): 8449-8467, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31132268

RESUMEN

A new generation of double pyridazine molecular rotors differing in intramolecular dipole-dipole spacing was synthesized. All rotor molecules formed bulk inclusions in a tris( o-phenylenedioxy)cyclotriphosphazene (TPP) host. Results of dielectric spectroscopy were fitted to a pair of nine-state models that accounted for interactions of neighboring dipoles at either an aligned or opposed possible orientation of the local threefold dipole rotation potentials within a channel of the TPP host. The results indicate dipole-dipole interaction strengths at the 100 to 200 K scale that lead dipoles to preferentially populate a subset of low-energy configurations. They also reveal that pyridazines with ethynyl substituents in 3- and 6-positions have slightly higher rotational barriers (3.2-3.5 kcal/mol) than those carrying one ethynyl and one tert-butyl group (1.9-3.0 kcal/mol). Upon cooling, these barriers reduce the rate of thermal transitions between the potential wells so much that the inclusions cannot achieve ordered dipolar ground states.

13.
Photochem Photobiol Sci ; 18(9): 2112-2124, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31463501

RESUMEN

A simplified version of the frontier orbital model has been applied to pairs of C2, C2v, Cs, and C1 symmetry 1,3-diphenylisobenzofuran rotamers to determine their best packing for fast singlet fission (SF). For each rotamer the square of the electronic matrix element for SF was calculated at 2.2 × 109 pair geometries and a few thousand most significant physically accessible local maxima were identified in the six-dimensional space of mutual arrangements. At these pair geometries, SF energy balance was evaluated, relative SF rate constants were approximated using Marcus theory, and the SF rate constant kSF was maximized by further optimization of the geometry of the molecular pair. The process resulted in 142, 67, 214, and 291 unique geometries for the C2, C2v, Cs, and C1 symmetry molecular pairs, respectively, predicted to be superior to the C2 symmetrized known crystal pair structure. These optimized pair geometries and their triplet biexciton binding energies are reported as targets for crystal engineering and/or covalent dimer synthesis, and as possible starting points for high-level pair geometry optimizations.

14.
J Chem Phys ; 151(18): 184903, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31731849

RESUMEN

We report an investigation of structure and photophysics of thin layers of cibalackrot, a sturdy dye derived from indigo by double annulation at the central double bond. Evaporated layers contain up to three phases, two crystalline and one amorphous. Relative amounts of all three have been determined by a combination of X-ray diffraction and FT-IR reflectance spectroscopy. Initially, excited singlet state rapidly produces a high yield of a transient intermediate whose spectral properties are compatible with charge-transfer nature. This intermediate more slowly converts to a significant yield of triplet, which, however, does not exceed 100% and may well be produced by intersystem crossing rather than singlet fission. The yields were determined by transient absorption spectroscopy and corrected for effects of partial sample alignment by a simple generally applicable procedure. Formation of excimers was also observed. In order to obtain guidance for improving molecular packing by a minor structural modification, calculations by a simplified frontier orbital method were used to find all local maxima of singlet fission rate as a function of geometry of a molecular pair. The method was tested at 48 maxima by comparison with the ab initio Frenkel-Davydov exciton model.

15.
Molecules ; 24(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640159

RESUMEN

We have examined the insertion of carbenes carrying leaving groups into the [nido-B11H13]2- dianion to form the [closo-1-CB11H12]- anion. The best procedure uses CF3SiMe3 and LiCl as the source of CF2. It is simple, convenient and scalable and proceeds with 70-90% yield. Density functional calculations have been used to develop a mechanistic proposal that accounts for the different behavior of CF2, requiring only one equivalent of base for successful conversion of Na[nido-B11H14]- to [closo-1-CB11H12]-, and CCl2 and CBr2, which require more.


Asunto(s)
Compuestos de Boro/química , Hidrocarburos Fluorados/síntesis química , Hidrocarburos Fluorados/química , Cloruro de Litio/química , Estructura Molecular
16.
J Am Chem Soc ; 140(36): 11158-11160, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30114903

RESUMEN

Density functional theory calculations confirm that the simple explanation of the origin of the striking conformational dependence of σ-electron localization/delocalization in polysilanes offered by the extremely simple Ladder C model is correct.

17.
J Org Chem ; 83(10): 5474-5479, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29652151

RESUMEN

We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1•+, the radical anion 1•- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2•-.

18.
Chem Rev ; 116(3): 771-85, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26761074

RESUMEN

After a brief survey of conventional radical polymerization of alkenes, we review their Li(+) catalyzed radical polymerization and their controlled radical polymerization. Emphasis is on homopolymerization, but related copolymerization of less activated monomers is mentioned as well.

19.
J Phys Chem A ; 122(3): 798-810, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29240426

RESUMEN

Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C2B10H12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6-12-6], showed both Robin-Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling Hab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ∼1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. The results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.

20.
J Am Chem Soc ; 139(44): 15572-15575, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29039927

RESUMEN

A simplified version of the frontier orbital model for a noncovalent dimer is used to derive guidelines for dimer geometries that maximize the square of the electronic matrix element for singlet fission. The use of the guidelines requires only the knowledge of the highest occupied and lowest unoccupied orbital of the monomer and the overlaps of the atomic orbitals on partner A with those on partner B.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA