Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Curr Biol ; 7(7): 468-78, 1997 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9210377

RESUMEN

BACKGROUND: Drosophila axis formation requires a series of inductive interactions between the oocyte and the somatic follicle cells. Early in oogenesis, Gurken protein, a member of the transforming growth factor alpha family, is produced by the oocyte to induce the adiacent follicle cells to adopt a posterior cell fate. These cells subsequently send an unidentified signal back to the oocyte to induce the formation of a polarised microtubule array that defines the anterior-posterior axis. The polarised microtubules also direct the movement of the nucleus and gurken mRNA from the posterior to the anterior of the oocyte, where Gurken signals a second time to induce the dorsal follicle cells, thereby polarising the dorsal-ventral axis. RESULTS: In addition to its previously described role in the localisation of oskar mRNA, the mago nashi gene is required in the germ line for the transduction of the polarising signal from the posterior follicle cells. Using a new in vivo marker for microtubules, we show that mago nashi mutant oocytes develop a symmetric microtubule cytoskeleton that leads to the transient localisation of bicoid mRNA to both poles. Furthermore, the oocyte nucleus often fails to migrate to the anterior, causing the second Gurken signal to be sent in the same direction as the first. This results in a novel phenotype in which the anterior of the egg is ventralised and the posterior dorsalised, demonstrating that the migration of the oocyte nucleus determines the relative orientation of the two principal axes of Drosophila. The mago nashi gene is highly conserved from plants to animals, and encodes a protein that is predominantly localised to nuclei. CONCLUSIONS: The mago nashi gene plays two essential roles in Drosophila axis formation: it is required downstream of the signal from the posterior follicle cells for the polarisation of the oocyte microtubule cytoskeleton, and has a second, independent role in the localisation of oskar mRNA to the posterior of the oocyte.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila , Drosophila/embriología , Genes de Insecto , Proteínas Nucleares/genética , Oocitos/citología , Factor de Crecimiento Transformador alfa , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Núcleo Celular , Polaridad Celular , ADN , Drosophila/genética , Femenino , Proteínas de Homeodominio/genética , Humanos , Proteínas de Insectos/genética , Microtúbulos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/fisiología , Proteínas de Unión al ARN , Homología de Secuencia de Aminoácido , Transactivadores/genética , Factores de Crecimiento Transformadores/genética
2.
Leukemia ; 26(5): 910-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22064349

RESUMEN

Although TP53 mutations are rare in acute myeloid leukemia (AML), wild type p53 function is habitually annulled through overexpression of MDM2 or through various mechanisms including epigenetic silencing by histone deacetylases (HDACs). We hypothesized that co-inhibition of MDM2 and HDACs, with nutlin-3 and valproic acid (VPA) would additively inhibit growth in leukemic cells expressing wild type TP53 and induce p53-mediated apoptosis. In vitro studies with the combination demonstrated synergistic induction of apoptosis in AML cell lines and patient cells. Nutlin-3 and VPA co-treatment resulted in massive induction of p53, acetylated p53 and p53 target genes in comparison with either agent alone, followed by p53 dependent cell death with autophagic features. In primary AML cells, inhibition of proliferation by the combination therapy correlated with the CD34 expression level of AML blasts. To evaluate the combination in vivo, we developed an orthotopic, NOD/SCID IL2rγ(null) xenograft model of MOLM-13 (AML FAB M5a; wild type TP53) expressing firefly luciferase. Survival analysis and bioluminescent imaging demonstrated the superior in vivo efficacy of the dual inhibition of MDM2 and HDAC in comparison with controls. Our results suggest the concomitant targeting of MDM2-p53 and HDAC inhibition, may be an effective therapeutic strategy for the treatment of AML.


Asunto(s)
Apoptosis/efectos de los fármacos , Genes p53 , Imidazoles/farmacología , Leucemia Mieloide Aguda/patología , Piperazinas/farmacología , Ácido Valproico/farmacología , Acetilación , Animales , Antígenos CD34/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microscopía Electrónica de Transmisión , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores
3.
Dev Biol ; 172(2): 377-95, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8612958

RESUMEN

Although there are many differences, mRNA localisations in the Xenopus oocyte show some tantalizing similarities to those occurring in Drosophila development. As in Drosophila, transcripts localise to opposite poles of the oocyte, this localisation is hierarchical and occurs in a multistep process in which localisation is followed by anchoring at the cortex. This distinction between initial transport and long-term maintenance reflects the dynamic nature of the cytoskeleton: the microtubule tracks form and reform according to the needs of the cell so that stable localisation must be mediated by a more constant structure--the cortex. A possible exception is the localisation of gurken mRNA where it is unknown whether there are separate mechanisms for transport to and maintenance at the oocyte nucleus. However, gurken is responsible for the transmission of a transitory signal; once this has been received, and the fate of the recipient follicle cells determined, there is no further need for localisation. It is possible that the time scale over which the localisation machinery is stable is sufficient for transmission of this signal without the need for a separate maintenance phase. The existence of a nanos homologue, Xcat-2 (Mosquera et al., 1993), associated with the Xenopus germ plasm is particularly interesting because of the morphological and functional similarities between Drosophila polar granules, Caenorhabditis P-granules, and Xenopus germ plasm. These electron-dense protein-RNA complexes are maternally supplied and in each case segregate with the germ line. These granules may represent a fundamental conserved pathway to germ-cell specification and it is now at least a possibility that they are also involved in establishing the embryonic axis through translational repression. In the case of Drosophila, this occurs through localised nanos acting (via Pumilio) on nanos response elements in hunchback mRNA. No such regulatory pair has yet been demonstrated in C. elegans or X. laevis, but each contains a candidate for one half of the interaction: glp-1 could be a target for an unidentified nanos-like protein; Xcat-2 may control translation of an unknown NRE-containing mRNA. Another common feature of mRNA localisation is that in every case where the targeting signal has been determined, it has been mapped to a region of the 3' UTR capable of forming an extensive secondary structure (e.g., David and Ish-Horowicz, 1991; Dalby and Glover, 1992; Gavis and Lehmann, 1992; Kim-Ha et al., 1993; Kislauskis et al., 1993, 1994; Lantz and Schedl, 1994). In several cases, translational control and transcript stability signals have also been mapped to these regions (Jackson and Standart, 1990; Standart et al., 1990; Standart and Hunt, 1990; Davis and Ish-Horowicz, 1991; Wharton and Struhl, 1991; Dalby and Glover, 1993; Evans et al., 1994; Kim-Ha et al., 1995). The large secondary structures may provide a means for stably exposing sequence-specific regions of RNA to proteins. Due to the ease with which RNA forms base pairs, it is likely that rather than remaining single-stranded, RNA within the cell forms some sort of secondary structure. The geometry of purely double-stranded RNA does not permit sequence specific interactions between proteins and the bases because the major groove is inaccessible to amino acid side chains (Weeks and Crothers, 1993). However, the distortions to the dsRNA helix provided by bulges, pseudoknots, and the single-strand loop regions in stem-loop structures do present sequence information that can be "read" by proteins. The extensive 3'UTRs may produce a stable secondary structure which ensures that regulatory elements remain exposed in such regions rather than hidden in double-stranded stems. (ABSTRACT TRUNCATED)


Asunto(s)
Drosophila melanogaster/embriología , ARN Mensajero/análisis , Xenopus/embriología , Animales , Drosophila melanogaster/metabolismo , Oocitos/metabolismo , Proteínas/metabolismo , Xenopus/metabolismo
4.
EMBO J ; 19(6): 1366-77, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10716936

RESUMEN

Drosophila Staufen protein is required for the localization of oskar mRNA to the posterior of the oocyte, the anterior anchoring of bicoid mRNA and the basal localization of prospero mRNA in dividing neuroblasts. The only regions of Staufen that have been conserved throughout animal evolution are five double-stranded (ds)RNA-binding domains (dsRBDs) and a short region within an insertion that splits dsRBD2 into two halves. dsRBDs 1, 3 and 4 bind dsRNA in vitro, but dsRBDs 2 and 5 do not, although dsRBD2 does bind dsRNA when the insertion is removed. Full-length Staufen protein lacking this insertion is able to associate with oskar mRNA and activate its translation, but fails to localize the RNA to the posterior. In contrast, Staufen lacking dsRBD5 localizes oskar mRNA normally, but does not activate its translation. Thus, dsRBD2 is required for the microtubule-dependent localization of osk mRNA, and dsRBD5 for the derepression of oskar mRNA translation, once localized. Since dsRBD5 has been shown to direct the actin-dependent localization of prospero mRNA, distinct domains of Staufen mediate microtubule- and actin-based mRNA transport.


Asunto(s)
Secuencia Conservada/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Insectos/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Tipificación del Cuerpo/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Prueba de Complementación Genética , Proteínas de Homeodominio/genética , Proteínas de Insectos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Estructura Terciaria de Proteína , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Eliminación de Secuencia/genética , Transactivadores/genética , Transgenes/genética , Transgenes/fisiología
5.
Cytometry ; 12(4): 291-301, 1991.
Artículo en Inglés | MEDLINE | ID: mdl-1905992

RESUMEN

The previously reported FACS-Gal assay (Nolan et al., Proc Natl Acad Sci USA 85:2603-2607, 1988) measures E. coli lacZ-encoded beta-galactosidase activity in individual viable eukaryotic cells for a variety of molecular and cellular biological applications. Enzyme activity is measured by flow cytometry, using a fluorogenic substrate, which is hydrolyzed and retained intracellularly. In this system, lacZ serves both as a reporter gene to quantitate gene expression and as a selectable marker for the fluorescence-activated sorting of cells based on their lacZ expression level. This report details the following improvements of the original assay: 1) use of phenylethyl-beta-D-thiogalactoside, a competitive inhibitor, to inhibit beta-galactosidase activity; 2) reduction of false positives by two-color measurements; and 3) inhibition of interfering mammalian beta-galactosidases by the weak base chloroquine. We found an exponential relationship between fluorescence generated by beta-galactosidase in this assay and the intracellular concentration of beta-galactosidase molecules. Finally, we report conditions for optimal loading of the substrate (FDG) and retention of the product, fluorescein. Under these conditions, we found uniform loading of FDG in all cells of a clone in individual experiments. Together, these improvements make FACS-Gal an extremely powerful tool for investigation of gene expression in eukaryotic cells.


Asunto(s)
Fibroblastos/citología , Citometría de Flujo/métodos , Genes Reguladores/genética , Riñón/citología , Linfocitos T/citología , Animales , Línea Celular , Separación Celular , Cloroquina/farmacología , Pruebas Enzimáticas Clínicas/métodos , Fibroblastos/enzimología , Expresión Génica , Humanos , Riñón/embriología , Riñón/enzimología , Ratones , Linfocitos T/enzimología , Tiogalactósidos/farmacología , beta-Galactosidasa/análisis , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/genética
6.
EMBO J ; 19(5): 997-1009, 2000 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-10698941

RESUMEN

The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem-loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem-loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix alpha1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix alpha1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.


Asunto(s)
Proteínas de Drosophila , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Drosophila , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Transfección
7.
Genes Dev ; 12(12): 1847-57, 1998 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-9637686

RESUMEN

Neuroblasts undergo asymmetric stem cell divisions to generate a series of ganglion mother cells (GMCs). During these divisions, the cell fate determinant Prospero is asymmetrically partitioned to the GMC by Miranda protein, which tethers it to the basal cortex of the dividing neuroblast. Interestingly, prospero mRNA is similarly segregated by the dsRNA binding protein, Staufen. Here we show that Staufen interacts in vivo with a segment of the prospero 3' UTR. Staufen protein and prospero RNA colocalize to the apical side of the neuroblast at interphase, but move to the basal side during prophase. Both the apical and basal localization of Staufen are abolished by the removal of a conserved domain from the carboxyl terminus of the protein, which interacts in a yeast two-hybrid screen with Miranda protein. Furthermore, Miranda colocalizes with Staufen protein and prospero mRNA during neuroblast divisions, and neither Staufen nor prospero RNA are localized in miranda mutants. Thus Miranda, which localizes Prospero protein, also localizes prospero RNA through its interaction with Staufen protein.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila , Proteínas de Insectos/fisiología , Sistema Nervioso/citología , Sistema Nervioso/embriología , ARN/fisiología , Factores de Transcripción , Animales , Sitios de Unión/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Núcleo Celular/química , Núcleo Celular/fisiología , Citoplasma/química , Citoplasma/fisiología , Drosophila/química , Drosophila/embriología , Drosophila/fisiología , Ganglios de Invertebrados/química , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/embriología , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/química , Proteínas Nucleares/genética , Unión Proteica , ARN/análisis , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Transactivadores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA