Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(18): e2212685120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094145

RESUMEN

Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.


Asunto(s)
Cuerpo Humano , Melatonina , Masculino , Humanos , Femenino , Luz , Ritmo Circadiano/fisiología , Sueño/fisiología , Melatonina/metabolismo , Metabolómica
2.
FASEB J ; 37(4): e22827, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36856610

RESUMEN

Metabolic rhythms include rapid, ultradian (hourly) dynamics, but it remains unclear what their relationship to circadian metabolic rhythms is, and what role meal timing plays in coordinating these ultradian rhythms in metabolism. Here, we characterized widespread ultradian rhythms under ad libitum feeding conditions in the plasma metabolome of the vole, the gold standard animal model for behavioral ultradian rhythms, naturally expressing ~2-h foraging rhythms throughout the day and night. These ultradian metabolite rhythms co-expressed with diurnal 24-h rhythms in the same metabolites and did not align with food intake patterns. Specifically, under light-dark entrained conditions we showed twice daily entrainment of phase and period of ultradian behavioral rhythms associated with phase adjustment of the ultradian cycle around the light-dark and dark-light transitions. These ultradian activity patterns also drove an ultradian feeding pattern. We used a unique approach to map this behavioral activity/feeding status to high temporal resolution (every 90 min) measures of plasma metabolite profiles across the 24-h light-dark cycle. A total of 148 known metabolites were detected in vole plasma. Supervised, discriminant analysis did not group metabolite concentration by feeding status, instead, unsupervised clustering of metabolite time courses revealed clusters of metabolites that exhibited significant ultradian rhythms with periods different from the feeding cycle. Two clusters with dissimilar ultradian dynamics, one lipid-enriched (period = 3.4 h) and one amino acid-enriched (period = 4.1 h), both showed co-expression with diurnal cycles. A third cluster solely comprised of glycerophospholipids (specifically ether-linked phosphatidylcholines) expressed an 11.9 h ultradian rhythm without co-expressed diurnal rhythmicity. Our findings show coordinated co-expression of diurnal metabolic rhythms with rapid dynamics in feeding and metabolism. These findings reveal that ultradian rhythms are integral to biological timing of metabolic regulation, and will be important in interpreting the impact of circadian desynchrony and meal timing on metabolic rhythms.


Asunto(s)
Ritmo Ultradiano , Animales , Metaboloma , Ritmo Circadiano , Aminoácidos , Arvicolinae
3.
Pharmacol Res ; 199: 107011, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029806

RESUMEN

BACKGROUND: Night shift work is associated with sleep disturbances, obesity, and cardiometabolic diseases. Disruption of the circadian clock system has been suggested to be an independent cause of type 2 diabetes and cardiovascular disease in shift workers. We aimed to improve alignment of circadian timing with social and environmental factors with administration of melatonin. METHODS: In a randomized, placebo-controlled, prospective study, we analysed the effects of 2 mg of sustained-release melatonin versus placebo on glucose tolerance, insulin resistance indices, sleep quality, circadian profiles of plasma melatonin and cortisol, and diurnal blood pressure profiles in 24 rotating night shift workers during 12 weeks of treatment, followed by 12 weeks of wash-out. In a novel design, the time of melatonin administration (at night or in the morning) depended upon the shift schedule. We also compared the baseline profiles of the night shift (NS) workers with 12 healthy non-night shift (NNS)-working controls. RESULTS: We found significantly impaired indices of insulin resistance at baseline in NS versus NNS (p < 0.05), but no differences in oral glucose tolerance tests nor in the diurnal profiles of melatonin, cortisol, or blood pressure. Twelve weeks of melatonin treatment did not significantly improve insulin resistance, nor did it significantly affect diurnal blood pressure or melatonin and cortisol profiles. Melatonin administration, however, caused a significant improvement in sleep quality which was significantly impaired in NS versus NNS at baseline (p < 0.001). CONCLUSIONS: Rotating night shift work causes mild-to-moderate impairment of sleep quality and insulin resistance. Melatonin treatment at bedtime improves sleep quality, but does not significantly affect insulin resistance in rotating night shift workers after 12 weeks of administration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Melatonina , Humanos , Sueño , Melatonina/uso terapéutico , Melatonina/farmacología , Ritmo Circadiano , Hidrocortisona/farmacología , Presión Sanguínea , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Prospectivos
4.
Neuroimage ; 232: 117840, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577933

RESUMEN

BACKGROUND: Functional connectivity (FC) of the motor network (MN) is often used to investigate how intrinsic properties of the brain are associated with motor abilities and performance. In addition, the MN is a key feature in clinical work to map the recovery after stroke and aid the understanding of neurodegenerative disorders. Time of day variation and individual differences in circadian timing, however, have not yet been considered collectively when looking at FC. METHODS: A total of 33 healthy, right handed individuals (13 male, 23.1 ± 4.2 years) took part in the study. Actigraphy, sleep diaries and circadian phase markers (dim light melatonin onset and cortisol awakening response) were used to determine early (ECP, n = 13) and late (LCP, n = 20) circadian phenotype groups. Resting state functional MRI testing sessions were conducted at 14:00 h, 20:00 h and 08:00 h and preceded by a maximum voluntary contraction test for isometric grip strength to measure motor performance. RESULTS: Significant differences in FC of the MN between ECPs and LCPs were found, as well as significant variations between different times of day. A higher amplitude in diurnal variation of FC and performance was observed in LCPs compared to ECPs, with the morning being most significantly affected. Overall, lower FC was significantly associated with poorer motor performance. DISCUSSION: Our findings uncover intrinsic differences between times of day and circadian phenotype groups. This suggests that central mechanisms contribute to diurnal variation in motor performance and the functional integrity of the MN at rest influences the ability to perform in a motor task.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Ritmo Circadiano/fisiología , Red Nerviosa/fisiología , Fenotipo , Desempeño Psicomotor/fisiología , Actigrafía/métodos , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Fuerza de la Mano/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Factores de Tiempo , Adulto Joven
5.
PLoS Biol ; 16(8): e2005750, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30091978

RESUMEN

Sleep is essential for optimal brain functioning and health, but the biological substrates through which sleep delivers these beneficial effects remain largely unknown. We used a systems genetics approach in the BXD genetic reference population (GRP) of mice and assembled a comprehensive experimental knowledge base comprising a deep "sleep-wake" phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation (SD). We present analytical tools to interactively interrogate the database, visualize the molecular networks altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disruption of sleep already extensively reshaped the systems genetics landscape by altering 60%-78% of the transcriptomes and the metabolome, with numerous genetic loci affecting the magnitude and direction of change. Systems genetics integrative analyses drawing on all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of insufficient sleep itself on the transcriptome and metabolome are far more widespread than previously reported.


Asunto(s)
Ratones Endogámicos/genética , Ratones/genética , Sueño/genética , Animales , Bases de Datos Factuales , Metaboloma/genética , Privación de Sueño/genética , Transcriptoma/genética
6.
J Pineal Res ; 71(4): e12770, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34582575

RESUMEN

The suppression of melatonin by light at night (LAN) has been associated with a disruption of SCN function and biological processes. This study aimed to explore the impact of melatonin on glucose and lipid metabolism before and after a late evening meal. Nine healthy male participants (26 ± 1.3 years, BMI 24.8 ± 0.8 kg/m2 (mean ± SD) were randomly categorised into a three-way cross-over design protocol: light (>500 lux) (LS), dark (<5 lux) + exogenous melatonin (DSC) and light (>500 lux) + exogenous melatonin (LSC). All participants were awake in a semi-recumbent position during each clinical session, which started at 18 00 h and ended at 06:00 h the following day. The meal times were individualised according to melatonin onset estimated from the participants' 48-h sequential urine collection. The administration of exogenous melatonin was conducted 90 min before the evening meal. Saliva and plasma samples were collected at specific time points to analyse the glucose, insulin, NEFAs, TAGs, cortisol and melatonin levels. Participants demonstrated a significant reduction in postprandial plasma glucose, insulin and TAGs levels in the presence of melatonin (LSC and DSC) compared to LS (p = .002, p = .02 and p = .007, respectively). Pre-prandial plasma NEFAs were significantly lower in LS than DSC and LSC as melatonin rose (p < .001). Exogenous melatonin administrated before an evening test meal improved glucose tolerance, insulin sensitivity and reduced postprandial TAGs. This study could have implications for shift workers who may have lower melatonin levels at night due to light suppression.


Asunto(s)
Resistencia a la Insulina , Melatonina , Ritmo Circadiano , Estudios Cruzados , Glucosa , Humanos , Lípidos , Masculino , Comidas
7.
Proc Natl Acad Sci U S A ; 115(30): 7825-7830, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29991600

RESUMEN

Misalignment between internal circadian rhythmicity and externally imposed behavioral schedules, such as occurs in shift workers, has been implicated in elevated risk of metabolic disorders. To determine underlying mechanisms, it is essential to assess whether and how peripheral clocks are disturbed during shift work and to what extent this is linked to the central suprachiasmatic nuclei (SCN) pacemaker and/or misaligned behavioral time cues. Investigating rhythms in circulating metabolites as biomarkers of peripheral clock disturbances may offer new insights. We evaluated the impact of misaligned sleep/wake and feeding/fasting cycles on circulating metabolites using a targeted metabolomics approach. Sequential plasma samples obtained during a 24-h constant routine that followed a 3-d simulated night-shift schedule, compared with a simulated day-shift schedule, were analyzed for 132 circulating metabolites. Nearly half of these metabolites showed a 24-h rhythmicity under constant routine following either or both simulated shift schedules. However, while traditional markers of the circadian clock in the SCN-melatonin, cortisol, and PER3 expression-maintained a stable phase alignment after both schedules, only a few metabolites did the same. Many showed reversed rhythms, lost their rhythms, or showed rhythmicity only under constant routine following the night-shift schedule. Here, 95% of the metabolites with a 24-h rhythmicity showed rhythms that were driven by behavioral time cues externally imposed during the preceding simulated shift schedule rather than being driven by the central SCN circadian clock. Characterization of these metabolite rhythms will provide insight into the underlying mechanisms linking shift work and metabolic disorders.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Ayuno/sangre , Regulación de la Expresión Génica/fisiología , Hidrocortisona/sangre , Melatonina/sangre , Proteínas Circadianas Period/biosíntesis , Adulto , Femenino , Humanos , Masculino
8.
Eur J Neurosci ; 51(1): 366-378, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30929284

RESUMEN

Disruption to sleep and circadian rhythms can impact on metabolism. The study aimed to investigate the effect of acute sleep deprivation on plasma melatonin, cortisol and metabolites, to increase understanding of the metabolic pathways involved in sleep/wake regulation processes. Twelve healthy young female participants remained in controlled laboratory conditions for ~92 hr with respect to posture, meals and environmental light (18:00-23:00 hr and 07:00-09:00 hr <8 lux; 23:00-07:00 hr 0 lux (sleep opportunity) or <8 lux (continuous wakefulness); 09:00-18:00 hr ~90 lux). Regular blood samples were collected for 70 hr for plasma melatonin and cortisol, and targeted liquid chromatography-mass spectrometry metabolomics. Timepoints between 00:00 and 06:00 hr for day 1 (baseline sleep), day 2 (sleep deprivation) and day 3 (recovery sleep) were analysed. Cosinor analysis and MetaCycle analysis were performed for detection of rhythmicity. Night-time melatonin levels were significantly increased during sleep deprivation and returned to baseline levels during recovery sleep. No significant differences were observed in cortisol levels. Of 130 plasma metabolites quantified, 41 metabolites were significantly altered across the study nights, with the majority decreasing during sleep deprivation, most notably phosphatidylcholines. In cosinor analysis, 58 metabolites maintained their rhythmicity across the study days, with the majority showing a phase advance during acute sleep deprivation. This observation differs to that previously reported for males. Our study is the first of metabolic profiling in females during sleep deprivation and recovery sleep, and offers a novel view of human sleep/wake regulation and sex differences.


Asunto(s)
Melatonina , Ritmo Circadiano , Femenino , Humanos , Hidrocortisona , Masculino , Sueño , Privación de Sueño
9.
J Pineal Res ; 68(2): e12624, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31742766

RESUMEN

Melatonin is a pleiotrophic hormone, synthesised primarily by the pineal gland under the control of the suprachiasmatic nuclei (SCN). It not only provides a hormonal signal of darkness but also has neuroprotective properties. Huntington's disease (HD) is a progressive neurodegenerative disorder characterised by abnormal motor, cognitive and psychiatric symptoms. There is growing evidence, particularly from animal models, that circadian rhythms may also be disturbed in HD. We measured two circadian-regulated hormones, melatonin and cortisol, in plasma samples collected around-the-clock from normal and presymptomatic transgenic HD sheep (Ovis aries) at 5 and 7 years of age, to assess SCN-driven rhythms and the effect of genotype, sex and age. Melatonin-related precursors and metabolites (tryptophan, serotonin, kynurenine) were also measured by liquid chromatography (LC)-mass spectrometry (MS). At 5 years of age in both rams and ewes, plasma melatonin levels were significantly elevated in HD sheep. In ewes measured 2 years later, there was still a significant elevation of nocturnal melatonin. Furthermore, the daytime baseline levels of melatonin were significantly higher in HD sheep. Since increased melatonin could have global beneficial effects on brain function, we suggest that the increased melatonin measured in presymptomatic HD sheep is part of an autoprotective response to mutant huntingtin toxicity that may account, at least in part, for the late onset of disease that characterises HD.


Asunto(s)
Ritmo Circadiano , Enfermedad de Huntington/sangre , Melatonina/sangre , Neuroprotección , Ovinos/sangre , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino
10.
J Pineal Res ; 69(3): e12675, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32598502

RESUMEN

Studying communities at different stages of urbanisation and industrialisation can teach us how timing and intensity of light affect the circadian clock under real-life conditions. We have previously described a strong tendency towards morningness in the Baependi Heart Study, located in a small rural town in Brazil. Here, we tested the hypothesis that this morningness tendency is associated with early circadian phase based on objective measurements (as determined by dim light melatonin onset, DLMO, and activity) and light exposure. We also analysed how well the previously collected chronotype questionnaire data were able to predict these DLMO values. The average DLMO observed in 73 participants (40 female) was 20:03 ± 01:21, SD, with an earlier average onset in men (19:38 ± 01:16) than in women (20:24 ± 01:21; P ≤ .01). However, men presented larger phase angle between DLMO and sleep onset time as measured by actigraphy (4.11 hours vs 3.16 hours; P ≤ .01). Correlational analysis indicated associations between light exposure, activity rhythms and DLMO, such that early DLMO was observed in participants with higher exposure to light, higher activity and earlier light exposure. The strongest significant predictor of DLMO was morningness-eveningness questionnaire (MEQ) (beta=-0.35, P ≤ .05), followed by age (beta = -0.47, P ≤ .01). Sex, light exposure and variables derived from the Munich chronotype questionnaire were not significant predictors. Our observations demonstrate that both early sleep patterns and earlier circadian phase have been retained in this small rural town in spite of availability of electrification, in contrast to metropolitan postindustrial areas.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Melatonina/metabolismo , Población Rural , Sueño/fisiología , Encuestas y Cuestionarios , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
Neurobiol Dis ; 121: 240-251, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30300675

RESUMEN

Therapeutic hypothermia is only partially protective for neonatal encephalopathy; there is an urgent need to develop treatments that augment cooling. Our objective was to assess safety, efficacy and pharmacokinetics of 5 and 15 mg/kg/24 h melatonin (proprietary formulation) administered at 2 h and 26 h after hypoxia-ischemia (HI) with cooling in a piglet model. Following moderate cerebral HI, 30 piglets were eligible and randomized to: i) Hypothermia (33.5 °C, 2-26 h) and vehicle (HT + V;n = 13); b) HT and 5 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-5;n = 4); c) HT and 15 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-15;n = 13). Intensive care was maintained for 48 h; brain MRS was acquired and cell death (TUNEL) evaluated at 48 h. Comparing HT + V with HT + Mel-5 and HT + Mel-15, there was no difference in blood pressure or inotropic support needed, brain Lactate/N Acetylaspartate at 24 h and 48 h was similar, ATP/phosphate pool was higher for HT + Mel-15 versus HT + V at 24 h (p = 0.038) but not 48 h. A localized reduction in TUNEL positive cell death was observed in the sensorimotor cortex in the 15 mg/kg melatonin group (HT + Mel-15 versus HT + V; p < 0.003) but not in the 5 mg/kg melatonin group (HT + Mel-5 versus HT + V; p = 0.808). Putative therapeutic melatonin levels were reached 8 h after HI (104 increase from baseline; ~15-30 mg/l). Mean ±â€¯SD peak plasma melatonin levels after the first infusion were 0.0014 ±â€¯0.0012 mg/l in the HT + V group, 3.97 ±â€¯1.53 mg/l in the HT + Mel-5 group and 16.8 ±â€¯8.3 mg/l in the HT + Mel-15 group. Protection was dose dependent; 15 mg/kg melatonin started 2 h after HI, given over 6 h, was well tolerated and augmented hypothermic protection in sensorimotor cortex. Earlier attainment of therapeutic plasma melatonin levels may optimize protection by targeting initial events of reperfusion injury. The time window for intervention with melatonin, as adjunct therapy with cooling, is likely to be narrow and should be considered in designing future clinical studies.


Asunto(s)
Encéfalo/efectos de los fármacos , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/terapia , Melatonina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/metabolismo , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Sus scrofa , Investigación Biomédica Traslacional
12.
Proc Natl Acad Sci U S A ; 113(11): 3066-71, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26858432

RESUMEN

Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations.


Asunto(s)
Cognición/fisiología , Estaciones del Año , Nivel de Alerta/fisiología , Atención/fisiología , Ritmo Circadiano , Estudios Transversales , Oscuridad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Neuroimagen , Desempeño Psicomotor/fisiología , Valores de Referencia , Privación de Sueño/fisiopatología , Privación de Sueño/psicología , Adulto Joven
13.
Neuroimage ; 175: 354-364, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29604455

RESUMEN

Lack of sleep has a considerable impact on vigilance: we perform worse, we make more errors, particularly at night, when we should be sleeping. Measures of brain functional connectivity suggest that decrease in vigilance during sleep loss is associated with an impaired cross-talk within the fronto-parietal cortex. However, fronto-parietal effective connectivity, which is more closely related to the causal cross-talk between brain regions, remains unexplored during prolonged wakefulness. In addition, no study has simultaneously investigated brain effective connectivity and wake-related changes in vigilance, preventing the concurrent incorporation of the two aspects. Here, we used electroencephalography (EEG) to record responses evoked by Transcranial Magnetic Stimulation (TMS) applied over the frontal lobe in 23 healthy young men (18-30 yr.), while they simultaneously performed a vigilance task, during 8 sessions spread over 29 h of sustained wakefulness. We assessed Response Scattering (ReSc), an estimate of effective connectivity, as the propagation of TMS-evoked EEG responses over the fronto-parietal cortex. Results disclose a significant change in fronto-parietal ReSc with time spent awake. When focusing on the night-time period, when one should be sleeping, participants with lower fronto-parietal ReSc performed worse on the vigilance task. Conversely, no association was detected during the well-rested, daytime period. Night-time fronto-parietal ReSc also correlated with objective EEG measures of sleepiness and alertness. These changes were not accompanied by variations in fronto-parietal response complexity. These results suggest that decreased brain response propagation within the fronto-parietal cortex is associated to increased vigilance failure during night-time prolonged wakefulness. This study reveals a novel facet of the detrimental effect on brain function of extended night-time waking hours, which is increasingly common in our societies.


Asunto(s)
Nivel de Alerta/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Lóbulo Frontal/fisiología , Lóbulo Parietal/fisiología , Privación de Sueño/fisiopatología , Vigilia/fisiología , Adolescente , Adulto , Lóbulo Frontal/fisiopatología , Humanos , Masculino , Lóbulo Parietal/fisiopatología , Estimulación Magnética Transcraneal , Adulto Joven
14.
Int J Legal Med ; 132(1): 25-32, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28780758

RESUMEN

Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor's alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.


Asunto(s)
Sangre/metabolismo , Metaboloma/genética , ARN Mensajero/sangre , Biomarcadores/sangre , Medicina Legal , Humanos , Hidrocortisona/sangre , Hidrocortisona/genética , Péptidos y Proteínas de Señalización Intracelular/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Logísticos , Masculino , Melatonina/sangre , Melatonina/genética , Metabolómica , Proteínas Serina-Treonina Quinasas/sangre , Proteínas Serina-Treonina Quinasas/genética , Factores de Tiempo
15.
Gen Comp Endocrinol ; 258: 250-258, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526480

RESUMEN

Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75°S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.


Asunto(s)
Aclimatación/fisiología , Conducta/fisiología , Ritmo Circadiano/fisiología , Estaciones del Año , Actigrafía , Adulto , Regiones Antárticas , Oscuridad , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Libido , Luz , Masculino , Melatonina/sangre , Fotoperiodo , Sueño/fisiología , Adulto Joven
16.
Proc Natl Acad Sci U S A ; 111(29): 10761-6, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002497

RESUMEN

Sleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigated with the use of a metabolomics approach. Here we have used untargeted and targeted liquid chromatography (LC)/MS metabolomics to examine the effect of acute sleep deprivation on plasma metabolite rhythms. Twelve healthy young male subjects remained in controlled laboratory conditions with respect to environmental light, sleep, meals, and posture during a 24-h wake/sleep cycle, followed by 24 h of wakefulness. Two-hourly plasma samples collected over the 48 h period were analyzed by LC/MS. Principal component analysis revealed a clear time of day variation with a significant cosine fit during the wake/sleep cycle and during 24 h of wakefulness in untargeted and targeted analysis. Of 171 metabolites quantified, daily rhythms were observed in the majority (n = 109), with 78 of these maintaining their rhythmicity during 24 h of wakefulness, most with reduced amplitude (n = 66). During sleep deprivation, 27 metabolites (tryptophan, serotonin, taurine, 8 acylcarnitines, 13 glycerophospholipids, and 3 sphingolipids) exhibited significantly increased levels compared with during sleep. The increased levels of serotonin, tryptophan, and taurine may explain the antidepressive effect of acute sleep deprivation and deserve further study. This report, to our knowledge the first of metabolic profiling during sleep and sleep deprivation and characterization of 24 h rhythms under these conditions, offers a novel view of human sleep/wake regulation.


Asunto(s)
Metaboloma , Privación de Sueño/metabolismo , Humanos , Masculino , Metabolómica , Análisis Multivariante , Análisis de Componente Principal , Privación de Sueño/sangre
17.
Int J Eat Disord ; 48(1): 46-54, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25196139

RESUMEN

OBJECTIVES: To investigate physical activity (PA) and drive for exercise in anorexia nervosa (AN) in relation to eating disorder (ED) pathology and anxiety. METHOD: Female participants were recruited into four groups: AN outpatients (n = 37), AN inpatients (n = 18), an anxiety group (n = 34), and healthy controls (HCs; n = 30). PA was measured by actigraphy and self-report together with drive/reasons for exercise, ED pathology, anxiety, depression, stress, BMI, and body composition. RESULTS: ED psychopathology, general psychopathology, and physiological measures were consistent with diagnosis. All groups showed a wide range in activity, especially on self-report. No significant group differences were observed in objective PA levels, yet AN groups reported 57-92% higher total activity than HCs. Outpatients reported more walking and moderate exercise than HCs, and inpatients reported more walking but less moderate and vigorous activity than all other groups. AN groups had significantly higher drive to exercise and valued "improving tone" as important and health and enjoyment as less important reasons to exercise. DISCUSSION: Self-perceived activity rather than objective data may partly explain the increased activity reported in AN. Drive to exercise in AN appears to be more related to ED pathology than to anxiety.


Asunto(s)
Anorexia Nerviosa/psicología , Impulso (Psicología) , Ejercicio Físico/psicología , Actigrafía , Adulto , Anorexia Nerviosa/diagnóstico , Ansiedad/complicaciones , Depresión/complicaciones , Femenino , Humanos , Entrevista Psicológica , Persona de Mediana Edad , Autoinforme , Adulto Joven
18.
Artículo en Inglés | MEDLINE | ID: mdl-38779872

RESUMEN

CONTEXT: Skeletal muscle plays a central role in the storage, synthesis, and breakdown of nutrients, yet little research has explored temporal responses of this human tissue, especially with concurrent measures of systemic biomarkers of metabolism. OBJECTIVE: To characterise temporal profiles in skeletal muscle expression of genes involved in carbohydrate metabolism, lipid metabolism, circadian clocks, and autophagy and descriptively relate them to systemic metabolites and hormones during a controlled laboratory protocol. METHODS: Ten healthy adults (9M/1F, mean ± SD: age: 30 ± 10 y; BMI: 24.1 ± 2.7 kg·m-2) rested in the laboratory for 37 hours with all data collected during the final 24 hours of this period (i.e., 0800-0800 h). Participants ingested hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 2200-0700 h. Blood samples were collected hourly for endocrine and metabolite analyses, with muscle biopsies occurring every 4 h from 1200 h to 0800 h the following day to quantify gene expression. RESULTS: Plasma insulin displayed diurnal rhythmicity peaking at 1804 h. Expression of skeletal muscle genes involved in carbohydrate metabolism (Name - Acrophase; GLUT4 - 1440 h; PPARGC1A -1613 h; HK2 - 1824 h) and lipid metabolism (FABP3 - 1237 h; PDK4 - 0530 h; CPT1B - 1258 h) displayed 24 h rhythmicity that reflected the temporal rhythm of insulin. Equally, circulating glucose (0019 h), NEFA (0456 h), glycerol (0432 h), triglyceride (2314 h), urea (0046 h), CTX (0507 h) and cortisol concentrations (2250 h) also all displayed diurnal rhythmicity. CONCLUSION: Diurnal rhythms were present in human skeletal muscle gene expression as well systemic metabolites and hormones under controlled diurnal conditions. The temporal patterns of genes relating to carbohydrate and lipid metabolism alongside circulating insulin are consistent with diurnal rhythms being driven in part by the diurnal influence of cyclic feeding and fasting.

19.
Br J Clin Pharmacol ; 76(5): 725-33, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23432339

RESUMEN

AIMS: Preterm infants are deprived of the normal intra-uterine exposure to maternal melatonin and may benefit from replacement therapy. We conducted a pharmacokinetic study to guide potential therapeutic trials. METHODS: Melatonin was administered to 18 preterm infants in doses ranging from 0.04-0.6 µg kg(-1) over 0.5-6 h. Pharmacokinetic profiles were analyzed individually and by population methods. RESULTS: Baseline melatonin was largely undetectable. Infants receiving melatonin at 0.1 µg kg(-1) h(-1) for 2 h showed a median half-life of 15.82 h and median maximum plasma concentration of 203.3 pg ml(-1) . On population pharmacokinetics, clearance was 0.045 l h(-1) , volume of distribution 1.098 l and elimination half-life 16.91 h with gender (P = 0.047) and race (P < 0.0001) as significant covariates. CONCLUSIONS: A 2 h infusion of 0.1 µg kg(-1) h(-1) increased blood melatonin from undetectable to approximately peak adult concentrations. Slow clearance makes replacement of a typical maternal circadian rhythm problematic. The pharmacokinetic profile of melatonin in preterm infants differs from that of adults so dosage of melatonin for preterm infants cannot be extrapolated from adult studies. Data from this study can be used to guide therapeutic clinical trials of melatonin in preterm infants.


Asunto(s)
Ritmo Circadiano , Terapia de Reemplazo de Hormonas/métodos , Melatonina/farmacocinética , Relación Dosis-Respuesta a Droga , Femenino , Semivida , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Melatonina/administración & dosificación , Factores Sexuales , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA