Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecotoxicol Environ Saf ; 206: 111373, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33002820

RESUMEN

Water quality guidelines and ecological risk assessment of chemical substances like nickel (Ni) in tropical regions such as South East Asia and Melanesia are often based on temperate information as a result of fewer Ni ecotoxicity data available for tropical species. This leaves an unknown margin of uncertainty in the risk assessment in the tropics. In order to fill this data gap, this study was designed to conduct standard toxicity tests on Ni with two freshwater species (acute tests) and three marine species (acute and chronic tests) originated from tropical Hong Kong. All tests were carried out using measured concentrations of Ni with control mortality below 15%. The median lethal concentrations (LC50s) were determined as 2520 (95% confidence interval: 2210, 2860) and 426 (351, 515) µg Ni L-1 for the freshwater gastropods Pomacea lineata (48 h) and Sulcospira hainanensis (96 h), respectively, while 96 h LC50s of 4300 (3610, 5090), 18,200 (6470, 51,200), 62,400 (56,800, 68,500), and 71,700 (68,200, 75,400) µg Ni L-1 were derived for the marine copepod Tigriopus japonicus, the gastropod Monodonta labio, juvenile and adult of the marine fish Oryzias melastigma, respectively. The chronic effect concentration of 10% (EC10) based on the intrinsic rate of increase of the population of T. japonicus was 29 (12, 69) µg Ni L-1. In terms of growth inhibition, the chronic EC10 for M. labio was 34 (17, 67) µg Ni L-1. The results also indicated that T. japonicus in maturation stage (LC10: 484 (349, 919) µg Ni L-1) was less sensitive than its nauplii stage (LC10: 44 (27, 72) µg Ni L-1). This study represents an important addition of high-quality toxicity data to the tropical Ni toxicity database which can be used for future ecological risk assessment of Ni and derivation of its water quality guidelines in tropical regions.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Ecotoxicología , Níquel/toxicidad , Clima Tropical , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/clasificación , Ecotoxicología/normas , Agua Dulce , Hong Kong , Dosificación Letal Mediana , Níquel/análisis , Agua de Mar , Contaminantes Químicos del Agua/análisis
2.
Integr Environ Assess Manag ; 19(1): 24-31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35656908

RESUMEN

Effects-based methods (EBMs) are considered part of a more integrative strategy for regulating substances of concern under the European Union Water Framework Directive. In general, EBMs have been demonstrated as useful indicators of effects on biota, although links to population and community-level effects are sometimes uncertain. When EBMs are sufficiently specific and sensitive, and links between measured endpoints and apical or higher level effects are established, they can be a useful tool in assessing effects from a specific toxicant or class of toxicants. This is particularly valuable for toxicants that are difficult to measure and for assessing the effects of toxicant mixtures. This paper evaluates 12 EBMs that have been proposed for potential use in the assessment of metals. Each EBM was evaluated with respect to metal specificity and sensitivity, sensitivity to other classes of toxicants, and the strength of the relationship between EBM endpoints and effects observed at the whole organism or population levels of biological organization. The evaluation concluded that none of the EBMs evaluated meet all three criteria of being sensitive to metals, insensitive to other classes of toxicants, and a strong indicator of effects at the whole organism or population level. Given the lack of suitable EBMs for metals, we recommended that the continued development of mixture biotic ligand models (mBLMs) may be the most effective way to achieve the goal of a more holistic approach to regulating metals in aquatic ecosystems. Given the need to further develop and validate mBLMs, we suggest an interim weight-of-evidence approach that includes mBLMs, macroinvertebrate community bioassessment, and measurement of metals in key macroinvertebrate species. This approach provides a near-term solution and simultaneously generates data needed for the refinement and validation of mBLMs. Once validated, it should be possible to rely primarily on mBLMs as an alternative to EBMs for metals. Integr Environ Assess Manag 2023;19:24-31.  © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Ecosistema , Ambiente , Ecotoxicología , Unión Europea , Monitoreo del Ambiente , Medición de Riesgo/métodos
3.
Environ Toxicol Chem ; 41(7): 1604-1612, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35502980

RESUMEN

Nickel (Ni) has a been a Priority Substance under the European Water Framework Directive since 2008. As such it is deemed to present an European Union-wide risk to surface waters. Since 2013, the Ni Environmental Quality Standard (EQS) has been bioavailability-based, and new European Guidance supports accounting for bioavailability in assessing Ni compliance with the EQS. The European Commission has developed an approach to determine whether Priority Substances present a sufficient European Union-wide risk to justify an ongoing statutory monitoring programme, effectively to deselect a substance. This is a key step to ensure that finite monitoring resources are targeted at delivering environmental benefit, when there is an ever-growing burden of determinands to measure for all regulators. When the European Commission performed this exercise for Ni without accounting for bioavailability, they concluded that Ni should not be deselected, and Ni is an European Union-wide risk. Performing this same exercise with the same methodology, using regulatory monitoring data for over 300 000 samples, from more than 19 000 sites across Europe, and accounting for bioavailability, as detailed in the Directive, >99% of sites comply with the Ni EQS. Nickel shows very low risks for all of the criteria identified by the European Commission that need to be met for deselection. Accounting for bioavailability is key in the assessment of Ni risks in surface waters to deliver ecologically relevant outcomes. Environ Toxicol Chem 2022;41:1604-1612. © 2022 NiPERA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Disponibilidad Biológica , Europa (Continente) , Agua Dulce/química , Níquel/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Environ Sci Pollut Res Int ; 29(19): 27664-27676, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34984608

RESUMEN

Nickel (Ni) ecotoxicity is dictated by water chemistry characteristics such as pH, water hardness, and amount of dissolved organic carbon. Bioavailability models have been developed to predict Ni toxicity and validated for European, Australian, and US natural waters. In this study, chronic toxicity tests in Ni-spiked Japanese river waters were conducted on a strain of Daphnia magna to test whether the chronic toxicity differs among Japanese natural waters with different water chemistries. Based on the results of chronic Ni toxicity tests, we assessed the performance of existing D. magna bioavailability models, which were developed in artificial waters (Model 1) and calibrated in European natural waters (Model 2), in terms of the accuracy and the bias of model predictions. Furthermore, we also calibrated the two models by using toxicity test results to develop a bioavailability model for Ni chronic toxicity to the strain of D. magna in Japanese river waters. The 10%, 20%, and 50% effect concentrations (EC10, EC20, and EC50) of dissolved Ni on reproduction of the D. magna strain were within ranges from 8.1 to 44.9 µg/L, 9.0 to 57.1 µg/L, and 10.9 to 86.1 µg/L, respectively. Results indicate that differences in water chemistry among Japanese river waters influenced chronic Ni toxicity to the model organism. Model 1predicted 43% of the observed EC10, EC20, and EC50 values within a factor of 2 and 100%, 100%, and 43% within a factor of 3, respectively. Model 2 predicted 14%, 14%, and 29% of the observed EC10, EC20, and EC50 values within a factor of 2 and 43% within a factor of 3. The values of model bias based on the geometric mean of ratios of EC10, EC20 and EC50 values predicted by each of the two models and observed EC10, EC20, and EC50 values were 0.71, 0.65, and 0.62 for Model 1 and 0.27, 0.26, and 0.29 for Model 2, respectively. After calibrating two models using the results of toxicity tests, refined Model 1 predicted 71%, 57%, and 57% of observed EC10, EC20, and EC50 values within a factor of 2 and 100%, 86%, and 100% within a factor of 3; refined Model 2 predicted 71% of observed EC10, EC20, and EC50 values within a factor 2 and 100%, 86%, and 86% within a factor of 3, respectively. Our results indicate that calibrating the Ni bioavailability models in Japanese natural waters increased their predictive capacity by a factor of up to approximately five.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Australia , Disponibilidad Biológica , Concentración de Iones de Hidrógeno , Japón , Níquel/toxicidad , Ríos , Agua/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
5.
Environ Toxicol Chem ; 40(11): 3049-3062, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34297851

RESUMEN

We studied biotic ligand model (BLM) predictions of the toxicity of nickel (Ni) and zinc (Zn) in natural waters from Illinois and Minnesota, USA, which had combinations of pH, hardness, and dissolved organic carbon (DOC) more extreme than 99.7% of waters in a nationwide database. We conducted 7-day chronic tests with Ceriodaphnia dubia and 96-hour acute and 14-day chronic tests with Neocloeon triangulifer and estimated median lethal concentrations and 20% effect concentrations for both species. Toxicity of Ni and Zn to both species differed among test waters by factors from 8 (Zn tests with C. dubia) to 35 (Zn tests with N. triangulifer). For both species and metals, tests with Minnesota waters (low pH and hardness, high DOC) showed lower toxicity than Illinois waters (high pH and high hardness, low DOC). Recalibration of the Ni BLM to be more responsive to pH-related changes improved predictions of Ni toxicity, especially for C. dubia. For the Zn BLM, we compared several input data scenarios, which generally had minor effects on model performance scores (MPS). A scenario that included inputs of modeled dissolved inorganic carbon and measured Al and Fe(III) produced the highest MPS values for tests with both C. dubia and N. triangulifer. Overall, the BLM framework successfully modeled variation in toxicity for both Zn and Ni across wide ranges of water chemistry in tests with both standard and novel test organisms. Environ Toxicol Chem 2021;40:3049-3062. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Cladóceros , Ephemeroptera , Contaminantes Químicos del Agua , Animales , Disponibilidad Biológica , Compuestos Férricos , Níquel/toxicidad , Compuestos Orgánicos , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Zinc/toxicidad
6.
Environ Toxicol Chem ; 40(1): 100-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997805

RESUMEN

There has been an increased emphasis on incorporating bioavailability-based approaches into freshwater guideline value derivations for metals in the Australian and New Zealand water quality guidelines. Four bioavailability models were compared: the existing European biotic ligand model (European Union BLM) and a softwater BLM, together with 2 newly developed multiple linear regressions (MLRs)-a trophic level-specific MLR and a pooled MLR. Each of the 4 models was used to normalize a nickel ecotoxicity dataset (combined tropical and temperate data) to an index condition of pH 7.5, 6 mg Ca/L, 4 mg Mg/L, (i.e., approximately 30 mg CaCO3 /L hardness), and 0.5 mg DOC/L. The trophic level-specific MLR outperformed the other 3 models, with 79% of the predicted 10% effect concentration (EC10) values within a factor of 2 of the observed EC10 values. All 4 models gave similar normalized species sensitivity distributions and similar estimates of protective concentrations (PCs). Based on the index condition water chemistry proposed as the basis of the national guideline value, a protective concentration for 95% of species (PC95) of 3 µg Ni/L was derived. This guideline value can be adjusted up and down to account for site-specific water chemistries. Predictions of PC95 values for 20 different typical water chemistries for Australia and New Zealand varied by >40-fold, which confirmed that correction for nickel bioavailability is critical for the derivation of site-specific guideline values. Environ Toxicol Chem 2021;40:100-112. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Australia , Disponibilidad Biológica , Agua Dulce , Nueva Zelanda
7.
Environ Toxicol Chem ; 40(1): 113-126, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044759

RESUMEN

Bioavailability-based approaches have been developed for the regulation of metals in freshwaters in several countries. Empirical multiple linear regression (MLR) models have been developed for nickel that can be applied to aquatic organisms. The MLR models have been compared against the use of previously developed biotic ligand models (BLMs) for the normalization of an ecotoxicity dataset compiled for the derivation of a water quality guideline value that could be applied in Australia and New Zealand. The MLR models were developed from data for a number of specific species and were validated independently to confirm their reliability. An MLR modeling approach using different models for algae, plants, invertebrates, and vertebrates performed better than either a pooled MLR model for all taxa or the BLMs, in terms of its ability to correctly predict the results of the tests in the ecotoxicity database based on their water chemistry and a fitted species-specific sensitivity parameter. The present study demonstrates that MLR approaches can be developed and validated to predict chronic nickel toxicity to freshwater ecosystems from existing datasets. The MLR approaches provide a viable alternative to the use of BLMs for taking account of nickel bioavailability in freshwaters for regulatory purposes. Environ Toxicol Chem 2021;40:113-126. © 2020 SETAC.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Animales , Australia , Disponibilidad Biológica , Ecosistema , Agua Dulce , Nueva Zelanda , Níquel/toxicidad , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/toxicidad
8.
Integr Environ Assess Manag ; 17(4): 802-813, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33404201

RESUMEN

Nickel laterite ore deposits are becoming increasingly important sources of Ni for the global marketplace and are found mainly in tropical and subtropical regions, including Indonesia, the Philippines, Papua New Guinea, Cuba, and New Caledonia. There are few legislatively derived standards or guidelines for the protection of aquatic life for Ni in many of these tropical regions, and bioavailability-based environmental risk assessment (ERA) approaches for metals have mainly been developed and tested in temperate regions, such as the United States and Europe. This paper reports on a multi-institutional, 5-y testing program to evaluate Ni exposure, effects, and risk characterization in the Southeast Asia and Melanesia (SEAM) region, which includes New Caledonia, Papua New Guinea, the Philippines, and Indonesia. Further, we have developed an approach to determine if the individual components of classical ERA, including effects assessments, exposure assessments, and risk characterization methodologies (which include bioavailability normalization), are applicable in this region. A main conclusion of this research program is that although ecosystems and exposures may be different in tropical systems, ERA paradigms are constant. A large chronic ecotoxicity data set for Ni is now available for tropical species, and the data developed suggest that tropical ecosystems are not uniquely sensitive to Ni exposure; hence, scientific support exists for combining tropical and temperate data sets to develop tropical environmental quality standards (EQSs). The generic tropical database and tropical exposure scenarios generated can be used as a starting point to examine the unique biotic and abiotic characteristics of specific tropical ecosystems in the SEAM region. Integr Environ Assess Manag 2021;17:802-813. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Asia Sudoriental , Disponibilidad Biológica , Ecosistema , Europa (Continente) , Agua Dulce , Melanesia , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
9.
Environ Toxicol Chem ; 39(1): 85-100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31880833

RESUMEN

Recently, there has been renewed interest in the development and use of empirical models to predict metal bioavailability and derive protective values for aquatic life. However, there is considerable variability in the conceptual and statistical approaches with which these models have been developed. In the present study, we review case studies of empirical bioavailability model development, evaluating and making recommendations on key issues, including species selection, identifying toxicity-modifying factors (TMFs) and the appropriate environmental range of these factors, use of existing toxicity data sets and experimental design for developing new data sets, statistical considerations in deriving species-specific and pooled bioavailability models, and normalization of species sensitivity distributions using these models. We recommend that TMFs be identified from a combination of available chemical speciation and toxicity data and statistical evaluations of their relationships to toxicity. Experimental designs for new toxicity data must be sufficiently robust to detect nonlinear responses to TMFs and should encompass a large fraction (e.g., 90%) of the TMF range. Model development should involve a rigorous use of both visual plotting and statistical techniques to evaluate data fit. When data allow, we recommend using a simple linear model structure and developing pooled models rather than retaining multiple taxa-specific models. We conclude that empirical bioavailability models often have similar predictive capabilities compared to mechanistic models and can provide a relatively simple, transparent tool for predicting the effects of TMFs on metal bioavailability to achieve desired environmental management goals. Environ Toxicol Chem 2019;39:85-100. © 2019 SETAC.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Agua Dulce/química , Metales/metabolismo , Modelos Biológicos , Contaminantes Químicos del Agua/metabolismo , Animales , Organismos Acuáticos/metabolismo , Disponibilidad Biológica , Modelos Lineales , Metales/toxicidad , Especificidad de la Especie , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA