Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 43: 55-72, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31874067

RESUMEN

Although Lorente de No' recognized the anatomical distinction of the hippocampal Cornu Ammonis (CA) 2 region, it had, until recently, been assigned no unique function. Its location between the key players of the circuit, CA3 and CA1, which along with the entorhinal cortex and dentate gyrus compose the classic trisynaptic circuit, further distracted research interest. However, the connectivity of CA2 pyramidal cells, together with unique patterns of gene expression, hints at a much larger contribution to hippocampal information processing than has been ascribed. Here we review recent advances that have identified new roles for CA2 in hippocampal centric processing, together with specialized functions in social memory and, potentially, as a broadcaster of novelty. These new data, together with CA2's role in disease, justify a closer look at how this small region exerts its influence and how it might best be exploited to understand and treat disease-related circuit dysfunctions.


Asunto(s)
Región CA2 Hipocampal/fisiología , Hipocampo/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Animales , Corteza Entorrinal/fisiología , Humanos , Red Nerviosa/fisiología
2.
Nature ; 586(7828): 270-274, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999460

RESUMEN

The ability to recognize information that is incongruous with previous experience is critical for survival. Novelty signals have therefore evolved in the mammalian brain to enhance attention, perception and memory1,2. Although the importance of regions such as the ventral tegmental area3,4 and locus coeruleus5 in broadly signalling novelty is well-established, these diffuse monoaminergic transmitters have yet to be shown to convey specific information on the type of stimuli that drive them. Whether distinct types of novelty, such as contextual and social novelty, are differently processed and routed in the brain is unknown. Here we identify the supramammillary nucleus (SuM) as a novelty hub in the hypothalamus6. The SuM region is unique in that it not only responds broadly to novel stimuli, but also segregates and selectively routes different types of information to discrete cortical targets-the dentate gyrus and CA2 fields of the hippocampus-for the modulation of mnemonic processing. Using a new transgenic mouse line, SuM-Cre, we found that SuM neurons that project to the dentate gyrus are activated by contextual novelty, whereas the SuM-CA2 circuit is preferentially activated by novel social encounters. Circuit-based manipulation showed that divergent novelty channelling in these projections modifies hippocampal contextual or social memory. This content-specific routing of novelty signals represents a previously unknown mechanism that enables the hypothalamus to flexibly modulate select components of cognition.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Animales , Región CA2 Hipocampal/citología , Región CA2 Hipocampal/fisiología , Cognición , Giro Dentado/citología , Giro Dentado/fisiología , Femenino , Hipotálamo Posterior/citología , Hipotálamo Posterior/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Interacción Social
3.
Brain ; 145(10): 3637-3653, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957475

RESUMEN

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs). In the mouse, we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Insensibilidad Congénita al Dolor , Animales , Humanos , Ratones , Mecanorreceptores , Canal de Sodio Activado por Voltaje NAV1.7/genética , Insensibilidad Congénita al Dolor/genética , Sodio
4.
J Anat ; 241(5): 1186-1210, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34528255

RESUMEN

Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.


Asunto(s)
Ganglios Espinales , Médula Espinal , Axones , Neuronas/fisiología , Neuronas Aferentes
5.
Brain ; 144(5): 1312-1335, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34128530

RESUMEN

Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.


Asunto(s)
Nociceptores/fisiología , Animales , Dolor Crónico/fisiopatología , Humanos , Investigación Biomédica Traslacional
6.
Brain ; 140(10): 2570-2585, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969375

RESUMEN

See Basbaum (doi:10.1093/brain/awx227) for a scientific commentary on this article. Peripheral neuropathic pain arises as a consequence of injury to sensory neurons; the development of ectopic activity in these neurons is thought to be critical for the induction and maintenance of such pain. Local anaesthetics and anti-epileptic drugs can suppress hyperexcitability; however, these drugs are complicated by unwanted effects on motor, central nervous system and cardiac function, and alternative more selective treatments to suppress hyperexcitability are therefore required. Here we show that a glutamate-gated chloride channel modified to be activated by low doses of ivermectin (but not glutamate) is highly effective in silencing sensory neurons and reversing neuropathic pain-related hypersensitivity. Activation of the glutamate-gated chloride channel expressed in either rodent or human induced pluripotent stem cell-derived sensory neurons in vitro potently inhibited their response to both electrical and algogenic stimuli. We have shown that silencing is achieved both at nerve terminals and the soma and is independent of membrane hyperpolarization and instead likely mediated by lowering of the membrane resistance. Using intrathecal adeno-associated virus serotype 9-based delivery, the glutamate-gated chloride channel was successfully targeted to mouse sensory neurons in vivo, resulting in high level and long-lasting expression of the channel selectively in sensory neurons. This enabled reproducible and reversible modulation of thermal and mechanical pain thresholds in vivo; analgesia was observed for 3 days after a single systemic dose of ivermectin. We did not observe any motor or proprioceptive deficits and noted no reduction in cutaneous afferent innervation or upregulation of the injury marker ATF3 following prolonged glutamate-gated chloride channel expression. Established mechanical and cold pain-related hypersensitivity generated by the spared nerve injury model of neuropathic pain was reversed by ivermectin treatment. The efficacy of ivermectin in ameliorating behavioural hypersensitivity was mirrored at the cellular level by a cessation of ectopic activity in sensory neurons. These findings demonstrate the importance of aberrant afferent input in the maintenance of neuropathic pain and the potential for targeted chemogenetic silencing as a new treatment modality in neuropathic pain.


Asunto(s)
Canales de Cloruro/genética , Terapia Genética/métodos , Neuralgia/genética , Ingeniería de Proteínas/métodos , Células Receptoras Sensoriales/metabolismo , Adenoviridae/genética , Animales , Células Cultivadas , Canales de Cloruro/biosíntesis , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Neuralgia/terapia , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
7.
Bioorg Med Chem Lett ; 25(3): 602-6, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25556095

RESUMEN

Small molecule (1) has been identified as a selective partial agonist of Opioid Receptor Like-1 (ORL-1) with potential utility for the treatment of anxiety and other disorders. Nociceptin (orphanin FQ) is an endogenous peptide ligand that binds to ORL-1, however it does not bind the classical δ, µ and κ opioid receptors with high affinity. The synthesis of 1 involved using a molecular diversity approach, to rapidly advance a library of compounds for biological testing. A lead selective potent partial agonist (35-fold ORL-1/Mu) progressed to ORL-1 (NOP or OP4) proof of concept testing in advanced studies. The synthetic approach and biological data for the related chemical series will be presented.


Asunto(s)
Receptores Opioides/agonistas , Bibliotecas de Moléculas Pequeñas/química , Compuestos de Espiro/química , Animales , Ansiedad/tratamiento farmacológico , Modelos Animales de Enfermedad , Actividad Motora/efectos de los fármacos , Péptidos Opioides/química , Péptidos Opioides/metabolismo , Unión Proteica , Ratas , Receptores Opioides/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Compuestos de Espiro/farmacología , Compuestos de Espiro/uso terapéutico , Relación Estructura-Actividad , Receptor de Nociceptina , Nociceptina
8.
Pediatr Blood Cancer ; 62(8): 1345-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25832557

RESUMEN

BACKGROUND: Curative therapy for childhood sarcoma presents challenges when complete resection is not possible. Ionizing radiation (XRT) is used as a standard modality at diagnosis or recurrence for childhood sarcoma; however, local recurrence is still problematic. Most childhood sarcomas are TP53 wild type at diagnosis, although approximately 5-10% have MDM2 amplification or overexpression. PROCEDURES: The MDM2 inhibitor, RG7388, was examined alone or in combination with XRT (20Gy given in 2 Gy daily fractions) to immune-deficient mice bearing Rh18 (embryonal) or a total of 30 Gy in 2 Gy fractions to mice bearing Rh30 (alveolar) rhabdomyosarcoma xenografts. RG7388 was administered by oral gavage using two schedules (daily ×5; schedule 1 or once weekly; schedule 2). TP53-responsive gene products (p21, PUMA, DDB2, and MIC1) as well as markers of apoptosis were analyzed. RESULTS: RG7388 showed no significant single agent antitumor activity. Twenty Grays XRT induced complete regressions (CR) of Rh18 with 100 percent tumor regrowth by week 7, but no tumor regrowth at 20 weeks when combined with RG7388. RG7388 enhanced time to recurrence combined with XRT in Rh30 xenografts compared to 30 Gy XRT alone. RG7388 did not enhance XRT-induced local skin toxicity. Combination treatments induced TP53 responsive genes more rapidly and to a greater magnitude than single agent treatments. CONCLUSIONS: RG7388 enhanced the activity of XRT in both rhabdomyosarcoma models without increasing local XRT-induced skin toxicity. Changes in TP53-responsive genes were consistent with the synergistic activity of RG7388 and XRT in the Rh18 model.


Asunto(s)
Apoptosis/efectos de la radiación , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Pirrolidinas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Rabdomiosarcoma/radioterapia , para-Aminobenzoatos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Niño , Preescolar , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia/epidemiología , Proteínas Proto-Oncogénicas c-mdm2/biosíntesis , Rabdomiosarcoma/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Commun ; 15(1): 2190, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467602

RESUMEN

The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.


Asunto(s)
Hipocampo , Células Piramidales , Ratones , Animales , Retroalimentación , Hipocampo/fisiología , Células Piramidales/fisiología , Neuronas , Región CA1 Hipocampal/fisiología , Interneuronas/fisiología , Potenciales de Acción/fisiología
10.
Lancet Oncol ; 13(11): 1133-40, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23084521

RESUMEN

BACKGROUND: We report a proof-of-mechanism study of RG7112, a small-molecule MDM2 antagonist, in patients with chemotherapy-naive primary or relapsed well-differentiated or dedifferentiated MDM2-amplified liposarcoma who were eligible for resection. METHODS: Patients with well-differentiated or dedifferentiated liposarcoma were enrolled at four centres in France. Patients received up to three 28-day neoadjuvant treatment cycles of RG7112 1440 mg/m(2) per day for 10 days. If a patient progressed at any point after the first cycle, the lesion was resected or, if unresectable, an end-of-study biopsy was done. The primary endpoint was to assess markers of RG7112-dependent MDM2 inhibition and P53 pathway activation (P53, P21, MDM2, Ki-67, macrophage inhibitory cytokine-1 [MIC-1], and apoptosis). All analyses were per protocol. This trial is registered with EudraCT, number 2009-015522-10. RESULTS: Between June 3, and Dec 14, 2010, 20 patients were enrolled and completed pretreatment and day 8 biopsies. 18 of 20 patients had TP53 wild-type tumours and two carried missense TP53 mutations. 14 of 17 assessed patients had MDM2 gene amplification. Compared with baseline, P53 and P21 concentrations, assessed by immunohistochemistry, had increased by a median of 4·86 times (IQR 4·38-7·97; p=0·0001) and 3·48 times (2·05-4·09; p=0·0001), respectively, at day 8 (give or take 2 days). At the same timepoint, relative MDM2 mRNA expression had increased by a median of 3·03 times (1·23-4·93; p=0·003) that at baseline. The median change from baseline for Ki-67-positive tumour cells was -5·05% (IQR -12·55 to 0·05; p=0·01). Drug exposure correlated with blood concentrations of MIC-1 (p<0·0001) and haematological toxicity. One patient had a confirmed partial response and 14 had stable disease. All patients experienced at least one adverse event, mostly nausea (14 patients), vomiting (11 patients), asthenia (nine patients), diarrhoea (nine patients), and thrombocytopenia (eight patients). There were 12 serious adverse events in eight patients, the most common of which were neutropenia (six patients) and thrombocytopenia (three patients). DISCUSSION: MDM2 inhibition activates the P53 pathway and decreases cell proliferation in MDM2-amplified liposarcoma. This study suggests that it is feasible to undertake neoadjuvant biopsy-driven biomarker studies in liposarcoma. FUNDING: F Hoffmann-La Roche.


Asunto(s)
Antineoplásicos , Liposarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor , Adulto , Anciano , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Apoptosis , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Supervivencia sin Enfermedad , Femenino , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven
11.
Pain ; 164(12): 2780-2791, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366588

RESUMEN

ABSTRACT: Insight into nociceptive circuits will ultimately build our understanding of pain processing and aid the development of analgesic strategies. Neural circuit analysis has been advanced greatly by the development of optogenetic and chemogenetic tools, which have allowed function to be ascribed to discrete neuronal populations. Neurons of the dorsal root ganglion, which include nociceptors, have proved challenging targets for chemogenetic manipulation given specific confounds with commonly used DREADD technology. We have developed a cre/lox dependant version of the engineered glutamate-gated chloride channel (GluCl) to restrict and direct its expression to molecularly defined neuronal populations. We have generated GluCl.Cre ON that selectively renders neurons expressing cre-recombinase susceptible to agonist-induced silencing. We have functionally validated our tool in multiple systems in vitro, and subsequently generated viral vectors and tested its applicability in vivo. Using Nav1.8 Cre mice to restrict AAV-GluCl.Cre ON to nociceptors, we demonstrate effective silencing of electrical activity in vivo and concomitant hyposensitivity to noxious thermal and noxious mechanical pain, whereas light touch and motor function remained intact. We also demonstrated that our strategy can effectively silence inflammatory-like pain in a chemical pain model. Collectively, we have generated a novel tool that can be used to selectively silence defined neuronal circuits in vitro and in vivo. We believe that this addition to the chemogenetic tool box will facilitate further understanding of pain circuits and guide future therapeutic development.


Asunto(s)
Integrasas , Dolor , Ratones , Animales , Integrasas/genética , Integrasas/metabolismo , Integrasas/farmacología , Nociceptores , Neuronas
12.
Sci Transl Med ; 15(716): eadh3839, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792955

RESUMEN

Hyperexcitability in sensory neurons is known to underlie many of the maladaptive changes associated with persistent pain. Chemogenetics has shown promise as a means to suppress such excitability, yet chemogenetic approaches suitable for human applications are needed. PSAM4-GlyR is a modular system based on the human α7 nicotinic acetylcholine and glycine receptors, which responds to inert chemical ligands and the clinically approved drug varenicline. Here, we demonstrated the efficacy of this channel in silencing both mouse and human sensory neurons by the activation of large shunting conductances after agonist administration. Virally mediated expression of PSAM4-GlyR in mouse sensory neurons produced behavioral hyposensitivity upon agonist administration, which was recovered upon agonist washout. Stable expression of the channel led to similar reversible suppression of pain-related behavior even after 10 months of viral delivery. Mechanical and spontaneous pain readouts were also ameliorated by PSAM4-GlyR activation in acute and joint pain inflammation mouse models. Furthermore, suppression of mechanical hypersensitivity generated by a spared nerve injury model of neuropathic pain was also observed upon activation of the channel. Effective silencing of behavioral hypersensitivity was reproduced in a human model of hyperexcitability and clinical pain: PSAM4-GlyR activation decreased the excitability of human-induced pluripotent stem cell-derived sensory neurons and spontaneous activity due to a gain-of-function NaV1.7 mutation causing inherited erythromelalgia. Our results demonstrate the contribution of sensory neuron hyperexcitability to neuropathic pain and the translational potential of an effective, stable, and reversible humanized chemogenetic system for the treatment of pain.


Asunto(s)
Neuralgia , Humanos , Ratones , Animales , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo , Mutación , Ganglios Espinales/metabolismo
13.
Pain ; 164(10): 2327-2342, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366595

RESUMEN

ABSTRACT: Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.


Asunto(s)
Lesiones por Aplastamiento , Neuralgia , Traumatismos de los Nervios Periféricos , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Axones/patología , Lesiones por Aplastamiento/patología , Compresión Nerviosa , Regeneración Nerviosa/fisiología , Nervio Ciático/lesiones
14.
Neuron ; 110(19): 3091-3105.e9, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35987206

RESUMEN

A major pathological hallmark of neurodegenerative diseases, including Alzheimer's, is a significant reduction in the white matter connecting the two cerebral hemispheres, as well as in the correlated activity between anatomically corresponding bilateral brain areas. However, the underlying circuit mechanisms and the cognitive relevance of cross-hemispheric (CH) communication remain poorly understood. Here, we show that novelty discrimination behavior activates CH neurons and enhances homotopic synchronized neural oscillations in the visual cortex. CH neurons provide excitatory drive required for synchronous neural oscillations between hemispheres, and unilateral inhibition of the CH circuit is sufficient to impair synchronous oscillations and novelty discrimination behavior. In the 5XFAD and Tau P301S mouse models, CH communication is altered, and novelty discrimination is impaired. These data reveal a hitherto uncharacterized CH circuit in the visual cortex, establishing a causal link between this circuit and novelty discrimination behavior and highlighting its impairment in mouse models of neurodegeneration.


Asunto(s)
Hipocampo , Corteza Visual , Animales , Modelos Animales de Enfermedad , Hipocampo/fisiología , Interneuronas/fisiología , Ratones , Neuronas/fisiología
15.
Neuron ; 110(16): 2571-2587.e13, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35705078

RESUMEN

Repeated application of noxious stimuli leads to a progressively increased pain perception; this temporal summation is enhanced in and predictive of clinical pain disorders. Its electrophysiological correlate is "wind-up," in which dorsal horn spinal neurons increase their response to repeated nociceptor stimulation. To understand the genetic basis of temporal summation, we undertook a GWAS of wind-up in healthy human volunteers and found significant association with SLC8A3 encoding sodium-calcium exchanger type 3 (NCX3). NCX3 was expressed in mouse dorsal horn neurons, and mice lacking NCX3 showed normal, acute pain but hypersensitivity to the second phase of the formalin test and chronic constriction injury. Dorsal horn neurons lacking NCX3 showed increased intracellular calcium following repetitive stimulation, slowed calcium clearance, and increased wind-up. Moreover, virally mediated enhanced spinal expression of NCX3 reduced central sensitization. Our study highlights Ca2+ efflux as a pathway underlying temporal summation and persistent pain, which may be amenable to therapeutic targeting.


Asunto(s)
Calcio , Intercambiador de Sodio-Calcio , Animales , Humanos , Ratones , Dolor , Células del Asta Posterior , Psicofísica , Intercambiador de Sodio-Calcio/genética
17.
Proc Natl Acad Sci U S A ; 105(47): 18572-7, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-18997013

RESUMEN

Local circuits in the medial entorhinal cortex (mEC) and hippocampus generate gamma frequency population rhythms independently. Temporal interaction between these areas at gamma frequencies is implicated in memory-a phenomenon linked to activity of NMDA-subtype glutamate receptors. While blockade of NMDA receptors does not affect frequency of gamma rhythms in hippocampus, it exposes a second, lower frequency (25-35 Hz) gamma rhythm in mEC. In experiment and model, NMDA receptor-dependent mEC gamma rhythms were mediated by basket interneurons, but NMDA receptor-independent gamma rhythms were mediated by a novel interneuron subtype-the goblet cell. This cell was distinct from basket cells in morphology, intrinsic membrane properties and synaptic inputs. The two different gamma frequencies matched the different intrinsic frequencies in hippocampal areas CA3 and CA1, suggesting that NMDA receptor activation may control the nature of temporal interactions between mEC and hippocampus, thus influencing the pathway for information transfer between the two regions.


Asunto(s)
Corteza Entorrinal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Corteza Entorrinal/efectos de los fármacos , Ketamina/farmacología , Memoria , Ratas , Ratas Wistar
18.
Nat Commun ; 12(1): 6114, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671042

RESUMEN

In the hippocampal circuit CA3 input plays a critical role in the organization of CA1 population activity, both during learning and sleep. While integrated spatial representations have been observed across the two hemispheres of CA1, these regions lack direct connectivity and thus the circuitry responsible remains largely unexplored. Here we investigate the role of CA3 in organizing bilateral CA1 activity by blocking synaptic transmission at CA3 terminals through the inducible transgenic expression of tetanus toxin. Although the properties of single place cells in CA1 were comparable bilaterally, we find a decrease of ripple synchronization between left and right CA1 after silencing CA3. Further, during both exploration and rest, CA1 neuronal ensemble activity is less coordinated across hemispheres. This included degradation of the replay of previously explored spatial paths in CA1 during rest, consistent with the idea that CA3 bilateral projections integrate activity between left and right hemispheres and orchestrate bilateral hippocampal coding.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Lateralidad Funcional/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Vías Nerviosas/fisiología , Células de Lugar/fisiología , Descanso/fisiología , Transmisión Sináptica/genética , Toxina Tetánica/genética , Vigilia/fisiología
20.
Bioorg Med Chem Lett ; 19(8): 2333-7, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19286381

RESUMEN

2,7-Diamino-thiazolo[4,5-d]pyrimidine analogues were synthesized as novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Representative compounds showed potent and selective EGFR inhibitory activities and inhibited in vitro cellular proliferation in EGFR-overexpressing human tumor cells. The synthesis and preliminary biological, physical, and pharmacokinetic evaluation of these thiazolopyrimidine compounds are reported.


Asunto(s)
Antineoplásicos/síntesis química , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/análogos & derivados , Inhibidores de Proteínas Quinasas/síntesis química , Pirimidinas/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA