Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(40): 17164-9, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855585

RESUMEN

Aquaporins are transmembrane channels that facilitate the permeation of water and small, uncharged amphipathic molecules across cellular membranes. One distinct aquaporin subfamily contains pure water channels, whereas a second subfamily contains channels that conduct small alditols such as glycerol, in addition to water. Distinction between these substrates is central to aquaporin function, though the contributions of protein structural motifs required for selectivity are not yet fully characterized. To address this question, we sequentially engineered three signature amino acids of the glycerol-conducting subfamily into the Escherichia coli water channel aquaporin Z (AqpZ). Functional analysis of these mutant channels showed a decrease in water permeability but not the expected increase in glycerol conduction. Using X-ray crystallography, we determined the atomic resolution structures of the mutant channels. The structures revealed a channel surprisingly similar in size to the wild-type AqpZ pore. Comparison with measured rates of transport showed that, as the size of the selectivity filter region of the channel approaches that of water, channel hydrophilicity dominated water conduction energetics. In contrast, the major determinant of selectivity for larger amphipathic molecules such as glycerol was channel cross-section size. Finally, we find that, although the selectivity filter region is indeed central to substrate transport, other structural elements that do not directly interact with the substrates, such as the loop connecting helices M6 and M7, and the C loop between helices C4 and C5, play an essential role in facilitating selectivity.


Asunto(s)
Acuaporinas/química , Proteínas de Escherichia coli/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Acuaporinas/metabolismo , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicerol/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteolípidos/química , Proteolípidos/metabolismo , Agua/metabolismo
2.
Proc Natl Acad Sci U S A ; 107(24): 11038-43, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534468

RESUMEN

Resistance nodulation cell division (RND)-based efflux complexes mediate multidrug and heavy-metal resistance in many Gram-negative bacteria. Efflux of toxic compounds is driven by membrane proton/substrate antiporters (RND protein) in the plasma membrane, linked by a membrane fusion protein (MFP) to an outer-membrane protein. The three-component complex forms an efflux system that spans the entire cell envelope. The MFP is required for the assembly of this complex and is proposed to play an important active role in substrate efflux. To better understand the role of MFPs in RND-driven efflux systems, we chose ZneB, the MFP component of the ZneCAB heavy-metal efflux system from Cupriavidus metallidurans CH34. ZneB is shown to be highly specific for Zn(2+) alone. The crystal structure of ZneB to 2.8 A resolution defines the basis for metal ion binding in the coordination site at a flexible interface between the beta-barrel and membrane proximal domains. The conformational differences observed between the crystal structures of metal-bound and apo forms are monitored in solution by spectroscopy and chromatography. The structural rearrangements between the two states suggest an active role in substrate efflux through metal binding and release.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de la Fusión de la Membrana/química , Proteínas de la Fusión de la Membrana/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/genética , Proteínas de Transporte de Catión/genética , Cristalografía por Rayos X , Cupriavidus/efectos de los fármacos , Cupriavidus/genética , Cupriavidus/metabolismo , Farmacorresistencia Bacteriana , Proteínas de la Fusión de la Membrana/genética , Metales Pesados/toxicidad , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Filogenia , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Espectroscopía Infrarroja por Transformada de Fourier
3.
Proc Natl Acad Sci U S A ; 106(18): 7437-42, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19383790

RESUMEN

Aquaporin (AQP) 4 is the predominant water channel in the mammalian brain, abundantly expressed in the blood-brain and brain-cerebrospinal fluid interfaces of glial cells. Its function in cerebral water balance has implications in neuropathological disorders, including brain edema, stroke, and head injuries. The 1.8-A crystal structure reveals the molecular basis for the water selectivity of the channel. Unlike the case in the structures of water-selective AQPs AqpZ and AQP1, the asparagines of the 2 Asn-Pro-Ala motifs do not hydrogen bond to the same water molecule; instead, they bond to 2 different water molecules in the center of the channel. Molecular dynamics simulations were performed to ask how this observation bears on the proposed mechanisms for how AQPs remain totally insulating to any proton conductance while maintaining a single file of hydrogen bonded water molecules throughout the channel.


Asunto(s)
Acuaporina 4/química , Agua/metabolismo , Acuaporina 4/metabolismo , Adhesión Celular , Cristalografía por Rayos X , Humanos , Conformación Proteica , Pliegue de Proteína
4.
J Am Chem Soc ; 132(47): 16750-2, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21049926

RESUMEN

We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles.


Asunto(s)
Ácido Desoxicólico/química , Ácido Desoxicólico/farmacología , Proteínas de la Membrana/química , Bacteriorodopsinas/química , Ácido Desoxicólico/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Maltosa/química , Micelas , Estabilidad Proteica/efectos de los fármacos , Rhodobacter capsulatus , Factores de Tiempo , Agua/química
5.
Curr Opin Struct Biol ; 13(4): 424-31, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12948772

RESUMEN

The aqua (glycero) porins conduct water (and glycerol) across cell membranes. The structure of these channels reveals a tripathic channel that supports a hydrophobic surface and, opposite to this, a line of eight hydrogen-bond acceptors and four hydrogen-bond donors. The eight carbonyls act as acceptors for water (or glycerol OH) molecules. The central water molecule in the channel is oriented to polarize hydrogen atoms outward from the center. This arrangement suggests how the structure prevents the potentially lethal conduction of protons across the membrane. The structure also suggests the mechanism behind the selectivity of aquaglyceroporins for glycerol, the basis for enantioselectivity among alditols, and the basis for the prevention of any leakage of the electrochemical gradient.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicerol/metabolismo , Acuaporinas/química , Proteínas de Escherichia coli/química , Iones/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Protones , Agua/metabolismo
6.
Structure ; 11(2): 147-54, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12575934

RESUMEN

Malonyl-CoA:ACP transacylase (MAT), the fabD gene product of Streptomyces coelicolor A3(2), participates in both fatty acid and polyketide synthesis pathways, transferring malonyl groups that are used as extender units in chain growth from malonyl-CoA to pathway-specific acyl carrier proteins (ACPs). Here, the 2.0 A structure reveals an invariant arginine bound to an acetate that mimics the malonyl carboxylate and helps define the extender unit binding site. Catalysis may only occur when the oxyanion hole is formed through substrate binding, preventing hydrolysis of the acyl-enzyme intermediate. Macromolecular docking simulations with actinorhodin ACP suggest that the majority of the ACP docking surface is formed by a helical flap. These results should help to engineer polyketide synthases (PKSs) that produce novel polyketides.


Asunto(s)
Ácidos Grasos/biosíntesis , Streptomyces/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Datos de Secuencia Molecular , Alineación de Secuencia , Streptomyces/genética , Especificidad por Sustrato
7.
Structure ; 10(11): 1559-68, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12429097

RESUMEN

ZhuH is a priming ketosynthase that initiates the elongation of the polyketide chain in the biosynthetic pathway of a type II polyketide, R1128. The crystal structure of ZhuH in complex with the priming substrate acetyl-CoA reveals an extensive loop region at the dimer interface that appears to affect the selectivity for the primer unit. Acetyl-CoA is bound in a 20 A-long channel, which placed the acetyl group against the catalytic triad. Analysis of the primer unit binding site in ZhuH suggests that it can accommodate acyl chains that are two to four carbons long. Selectivity and primer unit size appear to involve the side chains of three residues on the loops close to the dimer interface that constitute the bottom of the substrate binding pocket.


Asunto(s)
Complejos Multienzimáticos/química , Acetilcoenzima A/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Escherichia coli/metabolismo , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
8.
FEBS Lett ; 555(1): 79-84, 2003 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-14630323

RESUMEN

The atomic structures of a transmembrane water plus glycerol conducting channel (GlpF), and now of aquaporin Z (AqpZ) from the same species, Escherichia coli, bring the total to three atomic resolution structures in the aquaporin (AQP) family. Members of the AQP family each assemble as tetramers of four channels. Common helical axes support a wider channel in the glycerol plus water channel paradigm, GlpF. Water molecules form a single hydrogen bonded file throughout the 28 A long channel in AqpZ. The basis for absolute exclusion of proton or hydronium ion conductance through the line of water is explored using simulations.


Asunto(s)
Acuaporinas/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana , Secuencia de Aminoácidos , Acuaporina 1 , Acuaporinas/genética , Acuaporinas/metabolismo , Metabolismo de los Hidratos de Carbono , Conductividad Eléctrica , Electroquímica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Duplicación de Gen , Glicerol/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Canales de Potasio/química , Conformación Proteica , Homología de Secuencia de Aminoácido , Agua/metabolismo
9.
Curr Protoc Protein Sci ; 77: 29.10.1-29.10.30, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25081744

RESUMEN

Well-characterized membrane protein detergent complexes (PDC) that are pure, homogenous, and stable, with minimized excess detergent micelles, are essential for functional assays and crystallization studies. Procedural steps to measure the mass, size, shape, homogeneity, and molecular composition of PDCs and their host detergent micelles using size-exclusion chromatography (SEC) with a Viscotek Tetra Detector Array (TDA; absorbance, refractive index, light scattering, and viscosity detectors) are presented in this unit. The value of starting with a quality PDC sample, the precision and accuracy of the results, and the use of a digital benchtop refractometer are emphasized. An alternate and simplified purification and characterization approach using SEC with dual absorbance and refractive index detectors to optimize detergent and lipid concentration while measuring the PDC homogeneity is also described. Applications relative to purification and characterization goals are illustrated as well.


Asunto(s)
Cromatografía en Gel/métodos , Detergentes/química , Proteínas de la Membrana/análisis , Micelas , Refractometría/métodos
11.
J Mol Biol ; 385(3): 820-30, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19061901

RESUMEN

A medium-throughput approach is used to rapidly identify membrane proteins from a eukaryotic organism that are most amenable to expression in amounts and quality adequate to support structure determination. The goal was to expand knowledge of new membrane protein structures based on proteome-wide coverage. In the first phase, membrane proteins from the budding yeast Saccharomyces cerevisiae were selected for homologous expression in S. cerevisiae, a system that can be adapted to expression of membrane proteins from other eukaryotes. We performed medium-scale expression and solubilization tests on 351 rationally selected membrane proteins from S. cerevisiae. These targets are inclusive of all annotated and unannotated membrane protein families within the organism's membrane proteome. Two hundred seventy-two targets were expressed, and of these, 234 solubilized in the detergent n-dodecyl-beta-D-maltopyranoside. Furthermore, we report the identity of a subset of targets that were purified to homogeneity to facilitate structure determinations. The extensibility of this approach is demonstrated with the expression of 10 human integral membrane proteins from the solute carrier superfamily. This discovery-oriented pipeline provides an efficient way to select proteins from particular membrane protein classes, families, or organisms that may be more suited to structure analysis than others.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Cromatografía de Afinidad , Cromatografía en Gel , Humanos , Proteínas de la Membrana/aislamiento & purificación , Plásmidos , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Solubilidad
12.
Nat Protoc ; 4(5): 619-37, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19360018

RESUMEN

Protein crystallography is used to generate atomic resolution structures of protein molecules. These structures provide information about biological function, mechanism and interaction of a protein with substrates or effectors including DNA, RNA, cofactors or other small molecules, ions and other proteins. This technique can be applied to membrane proteins resident in the membranes of cells. To accomplish this, membrane proteins first need to be either heterologously expressed or purified from a native source. The protein has to be extracted from the lipid membrane with a mild detergent and purified to a stable, homogeneous population that may then be crystallized. Protein crystals are then used for X-ray diffraction to yield atomic resolution structures of the desired membrane protein target. Below, we present a general protocol for the growth of diffraction quality membrane protein crystals. The process of protein crystallization is highly variable, and obtaining diffraction quality crystals can require weeks to months or even years in some cases.


Asunto(s)
Cristalización/métodos , Cristalografía por Rayos X , Proteínas de la Membrana/química , Cromatografía de Afinidad , Cromatografía en Gel , Clonación Molecular , Detergentes , Escherichia coli/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Estructura Terciaria de Proteína , Solubilidad
13.
Proc Natl Acad Sci U S A ; 101(39): 14045-50, 2004 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-15377788

RESUMEN

We determined the x-ray structure of bovine aquaporin 0 (AQP0) to a resolution of 2.2 A. The structure of this eukaryotic, integral membrane protein suggests that the selectivity of AQP0 for water transport is based on the identity and location of signature amino acid residues that are hallmarks of the water-selective arm of the AQP family of proteins. Furthermore, the channel lumen is narrowed only by two, quasi-2-fold related tyrosine side chains that might account for reduced water conductance relative to other AQPs. The channel is functionally open to the passage of water because there are eight discreet water molecules within the channel. Comparison of this structure with the recent electron-diffraction structure of the junctional form of sheep AQP0 at pH 6.0 that was interpreted as closed shows no global change in the structure of AQP0 and only small changes in side-chain positions. We observed no structural change to the channel or the molecule as a whole at pH 10, which could be interpreted as the postulated pH-gating mechanism of AQP0-mediated water transport at pH >6.5. Contrary to the electron-diffraction structure, the comparison shows no evidence of channel gating induced by association of the extracellular domains of AQP0 at pH 6.0. Our structure aids the analysis of the interaction of the extracellular domains and the possibility of a cell-cell adhesion role for AQP0. In addition, our structure illustrates the basis for formation of certain types of cataracts that are the result of mutations.


Asunto(s)
Acuaporinas/química , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Acuaporinas/metabolismo , Transporte Biológico , Bovinos , Cristalografía por Rayos X , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Ovinos , Electricidad Estática , Agua/química , Agua/metabolismo
14.
Science ; 305(5690): 1587-94, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15361618

RESUMEN

The first structure of an ammonia channel from the Amt/MEP/Rh protein superfamily, determined to 1.35 angstrom resolution, shows it to be a channel that spans the membrane 11 times. Two structurally similar halves span the membrane with opposite polarity. Structures with and without ammonia or methyl ammonia show a vestibule that recruits NH4+/NH3, a binding site for NH4+, and a 20 angstrom-long hydrophobic channel that lowers the NH4+ pKa to below 6 and conducts NH3. Favorable interactions for NH3 are seen within the channel and use conserved histidines. Reconstitution of AmtB into vesicles shows that AmtB conducts uncharged NH3.


Asunto(s)
Amoníaco/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/química , Cristalización , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Compuestos de Amonio Cuaternario/metabolismo , Sistema del Grupo Sanguíneo Rh-Hr/química , Sistema del Grupo Sanguíneo Rh-Hr/metabolismo , Alineación de Secuencia , Agua/química , Agua/metabolismo
15.
Biochemistry ; 42(9): 2616-24, 2003 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-12614156

RESUMEN

Human chymase is a protease involved in physiological processes ranging from inflammation to hypertension. As are all proteases of the trypsin fold, chymase is synthesized as an inactive "zymogen" with an N-terminal pro region that prevents the transition of the zymogen to an activated conformation. The 1.8 A structure of pro-chymase, reported here, is the first zymogen with a dipeptide pro region (glycine-glutamate) to be characterized at atomic resolution. Three segments of the pro-chymase structure differ from that of the activated enzyme: the N-terminus (Gly14-Gly19), the autolysis loop (Gly142-Thr154), and the 180s loop (Pro185A-Asp194). The four N-terminal residues (Gly14-Glu15-Ile16-Ile17) are disordered. The autolysis loop occupies a position up to 10 A closer to the active site than is seen in the activated enzyme, thereby forming a hydrogen bond with the catalytic residue Ser195 and occluding the S1' binding pocket. Nevertheless, the catalytic triad (Asp102-His57-Ser195) is arrayed in a geometry close to that seen in activated chymase (all atom rmsd of 0.52 A). The 180s loop of pro-chymase is, on average, 4 A removed from its conformation in the activated enzyme. This conformation disconnects the oxyanion hole (the amides of Gly193 and Ser195) from the active site and positions only approximately 35% of the S1-S3 binding pockets in the active conformation. The backbone of residue Asp194 is rotated 180 degrees when compared to its conformation in the activated enzyme, allowing a hydrogen bond between the main-chain amide of residue Trp141 and the carboxylate of Asp194. The side chains of residues Phe191 and Lys192 of pro-chymase fill the Ile16 binding pocket and the base of the S1 binding pocket, respectively. The zymogen positioning of both the 180s and autolysis loops are synergistic structural elements that appear to prevent premature proteolysis by chymase and, quite possibly, by other dipeptide zymogens.


Asunto(s)
Simulación por Computador , Precursores Enzimáticos/química , Modelos Moleculares , Vesículas Secretoras/enzimología , Serina Endopeptidasas/química , Autólisis , Sitios de Unión , Quimasas , Cristalografía por Rayos X , Activación Enzimática , Humanos , Isoleucina/química , Fragmentos de Péptidos/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
16.
Science ; 296(5567): 525-30, 2002 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-11964478

RESUMEN

Aquaporins are transmembrane channels found in cell membranes of all life forms. We examine their apparently paradoxical property, facilitation of efficient permeation of water while excluding protons, which is of critical importance to preserving the electrochemical potential across the cell membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution and orientation of a single file of seven to nine water molecules inside the channel. Two conserved asparagines force a central water molecule to serve strictly as a hydrogen bond donor to its neighboring water molecules. Assisted by the electrostatic potential generated by two half-membrane spanning loops, this dictates opposite orientations of water molecules in the two halves of the channel, and thus prevents the formation of a "proton wire," while permitting rapid water diffusion. Both simulations and observations revealed a more regular distribution of channel water and an increased water permeability for the W48F/F200T mutant.


Asunto(s)
Acuaporinas/química , Proteínas de Escherichia coli/química , Agua/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Asparagina/química , Fenómenos Químicos , Química Física , Simulación por Computador , Cristalografía por Rayos X , Difusión , Electroquímica , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicerol/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Mutación , Conformación Proteica , Estructura Secundaria de Proteína , Protones , Electricidad Estática , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA