RESUMEN
The mammalian target of rapamycin (mTOR) pathway is activated by a variety of stimuli, including nutrients such as glucose and amino acids. The Ste20 family kinase MAP4K3 is regulated by amino acids and acts upstream of mTORC1. Here we investigate how MAP4K3 activity is regulated by amino acid sufficiency. We identify a transautophosphorylation site in the MAP4K3 kinase activation segment (Ser170) that is required for MAP4K3 activity and its activation of mTORC1 signaling. Following amino acid withdrawal, Ser170 is dephosphorylated via PP2A complexed to PR61 epsilon, a PP2A-targeting subunit. Inhibition of PR61 epsilon expression prevents MAP4K3 Ser170 dephosphorylation and impairs mTORC1 inhibition during amino acid withdrawal. We propose that during amino acid sufficiency Ser170-phosphorylated MAP4K3 activates mTORC1, but that upon amino acid restriction MAP4K3 preferentially interacts with PP2A(T61 epsilon), promoting dephosphorylation of Ser170, MAP4K3 inhibition, and, subsequently, inhibition of mTORC1 signaling.
Asunto(s)
Aminoácidos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Aminoácidos/deficiencia , Línea Celular , Activación Enzimática , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína , Proteínas/metabolismo , Interferencia de ARN , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR , TransfecciónRESUMEN
SF3B1 mutations are recurrent in cancer and result in aberrant splicing of a previously defined set of genes. Here, we investigated the fate of aberrant transcripts induced by mutant SF3B1 and the related functional consequences. We first demonstrate that mutant SF3B1 does not alter global nascent protein synthesis, suggesting target-dependent consequences. Polysome profiling revealed that 35% of aberrantly spliced transcripts are more translated than their corresponding canonically spliced transcripts. This mostly occurs in genes with enriched metabolic functions. Furthermore, LC-MS/MS analysis showed that mutant SF3B1 impacts the abundance of proteins involved in metabolism. Functional metabolic characterization revealed that mutant SF3B1 decreases mitochondrial respiration and promotes glycolysis to compensate for defective mitochondrial metabolism. Hence, mutant SF3B1 induces glycolysis dependency, which sensitizes cells to glycolysis inhibition. Overall, we provide evidence of the oncogenic involvement of mutant SF3B1 in uveal melanoma through a metabolic switch to glycolysis, revealing vulnerability to glycolysis inhibitors as a promising therapeutic strategy.
RESUMEN
Women diagnosed with high-grade serous ovarian cancers (HGSOC) are still likely to exhibit a bad prognosis, particularly when suffering from HGSOC of the Mesenchymal molecular subtype (50% cases). These tumors show a desmoplastic reaction with accumulation of extracellular matrix proteins and high content of cancer-associated fibroblasts. Using patient-derived xenograft mouse models of Mesenchymal and Non-Mesenchymal HGSOC, we show here that HGSOC exhibit distinct stiffness depending on their molecular subtype. Indeed, tumor stiffness strongly correlates with tumor growth in Mesenchymal HGSOC, while Non-Mesenchymal tumors remain soft. Moreover, we observe that tumor stiffening is associated with high stromal content, collagen network remodeling, and MAPK/MEK pathway activation. Furthermore, tumor stiffness accompanies a glycolytic metabolic switch in the epithelial compartment, as expected based on Warburg's effect, but also in stromal cells. This effect is restricted to the central part of stiff Mesenchymal tumors. Indeed, stiff Mesenchymal tumors remain softer at the periphery than at the core, with stromal cells secreting high levels of collagens and showing an OXPHOS metabolism. Thus, our study suggests that tumor stiffness could be at the crossroad of three major processes, i.e. matrix remodeling, MEK activation and stromal metabolic switch that might explain at least in part Mesenchymal HGSOC aggressiveness.
Asunto(s)
Colágeno/metabolismo , Mesodermo/metabolismo , Mesodermo/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Animales , Línea Celular Tumoral , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Células del Estroma/metabolismo , Células del Estroma/patologíaRESUMEN
The activation of the AGC (protein kinase A/protein kinase G/protein kinase C)-family kinase SGK1 (serum- and glucocorticoid-induced kinase 1) by insulin via PI3K (phosphoinositide 3-kinase) signalling has been appreciated for almost 10 years. PDK1 (phosphoinositide-dependent protein kinase 1), a kinase that phosphorylates the SGK1 catalytic domain at Thr(256), is known to play a critical role in SGK1 activation. However, the identity of the protein kinase(s) responsible for phosphorylation of Ser(422), a site outside the catalytic domain (the so-called hydrophobic motif, or HM) that promotes activation of the kinase by PDK1, was unclear. In work reported in this issue of the Biochemical Journal, García-Martínez and Alessi have revealed the identity of a 'PDK2' kinase that catalyses Ser(422) phosphorylation as mTORC2 (mammalian target of rapamycin complex 2), a multiprotein kinase that phosphorylates a similar site in PKB (protein kinase B).
Asunto(s)
Secuencias de Aminoácidos , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Activación Enzimática , Proteínas Inmediatas-Precoces/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Serina-Treonina Quinasas TOR , Factores de Transcripción/genéticaRESUMEN
High-grade serous ovarian cancer (HGSOC) remains an unmet medical challenge. Here, we unravel an unanticipated metabolic heterogeneity in HGSOC. By combining proteomic, metabolomic, and bioergenetic analyses, we identify two molecular subgroups, low- and high-OXPHOS. While low-OXPHOS exhibit a glycolytic metabolism, high-OXPHOS HGSOCs rely on oxidative phosphorylation, supported by glutamine and fatty acid oxidation, and show chronic oxidative stress. We identify an important role for the PML-PGC-1α axis in the metabolic features of high-OXPHOS HGSOC. In high-OXPHOS tumors, chronic oxidative stress promotes aggregation of PML-nuclear bodies, resulting in activation of the transcriptional co-activator PGC-1α. Active PGC-1α increases synthesis of electron transport chain complexes, thereby promoting mitochondrial respiration. Importantly, high-OXPHOS HGSOCs exhibit increased response to conventional chemotherapies, in which increased oxidative stress, PML, and potentially ferroptosis play key functions. Collectively, our data establish a stress-mediated PML-PGC-1α-dependent mechanism that promotes OXPHOS metabolism and chemosensitivity in ovarian cancer.
Asunto(s)
Carcinoma/metabolismo , Mitocondrias/metabolismo , Neoplasias Ováricas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Proteína de la Leucemia Promielocítica/fisiología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Fosforilación Oxidativa , Estrés OxidativoRESUMEN
The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3.
Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , ARN Interferente Pequeño/genética , Androstadienos/farmacología , Animales , Línea Celular , Drosophila/fisiología , Proteínas de Drosophila/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Riñón , ARN Bicatenario/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Transfección , WortmaninaRESUMEN
High-grade serous ovarian cancers (HGSOC) have been subdivided into molecular subtypes. The mesenchymal HGSOC subgroup, defined by stromal-related gene signatures, is invariably associated with poor patient survival. We demonstrate that stroma exerts a key function in mesenchymal HGSOC. We highlight stromal heterogeneity in HGSOC by identifying four subsets of carcinoma-associated fibroblasts (CAF-S1-4). Mesenchymal HGSOC show high content in CAF-S1 fibroblasts, which exhibit immunosuppressive functions by increasing attraction, survival, and differentiation of CD25+FOXP3+ T lymphocytes. The beta isoform of the CXCL12 chemokine (CXCL12ß) specifically accumulates in the immunosuppressive CAF-S1 subset through a miR-141/200a dependent-mechanism. Moreover, CXCL12ß expression in CAF-S1 cells plays a crucial role in CAF-S1 immunosuppressive activity and is a reliable prognosis factor in HGSOC, in contrast to CXCL12α. Thus, our data highlight the differential regulation of the CXCL12α and CXCL12ß isoforms in HGSOC, and reveal a CXCL12ß-associated stromal heterogeneity and immunosuppressive environment in mesenchymal HGSOC.
Asunto(s)
Quimiocina CXCL12/metabolismo , Fibroblastos/metabolismo , MicroARNs/fisiología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Femenino , Fibroblastos/citología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , Neoplasias Ováricas/genéticaRESUMEN
Activation of 40S ribosomal protein S6 kinases (S6Ks) is mediated by anabolic signals triggered by hormones, growth factors, and nutrients. Stimulation by any of these agents is inhibited by the bacterial macrolide rapamycin, which binds to and inactivates the mammalian target of rapamycin, an S6K kinase. In mammals, two genes encoding homologous S6Ks, S6K1 and S6K2, have been identified. Here we show that mice deficient for S6K1 or S6K2 are born at the expected Mendelian ratio. Compared to wild-type mice, S6K1(-/-) mice are significantly smaller, whereas S6K2(-/-) mice tend to be slightly larger. However, mice lacking both genes showed a sharp reduction in viability due to perinatal lethality. Analysis of S6 phosphorylation in the cytoplasm and nucleoli of cells derived from the distinct S6K genotypes suggests that both kinases are required for full S6 phosphorylation but that S6K2 may be more prevalent in contributing to this response. Despite the impairment of S6 phosphorylation in cells from S6K1(-/-)/S6K2(-/-) mice, cell cycle progression and the translation of 5'-terminal oligopyrimidine mRNAs were still modulated by mitogens in a rapamycin-dependent manner. Thus, the absence of S6K1 and S6K2 profoundly impairs animal viability but does not seem to affect the proliferative responses of these cell types. Unexpectedly, in S6K1(-/-)/S6K2(-/-) cells, S6 phosphorylation persisted at serines 235 and 236, the first two sites phosphorylated in response to mitogens. In these cells, as well as in rapamycin-treated wild-type, S6K1(-/-), and S6K2(-/-) cells, this step was catalyzed by a mitogen-activated protein kinase (MAPK)-dependent kinase, most likely p90rsk. These data reveal a redundancy between the S6K and the MAPK pathways in mediating early S6 phosphorylation in response to mitogens.
Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Biosíntesis de Proteínas , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sirolimus/metabolismo , Animales , Animales Recién Nacidos , Ciclo Celular/fisiología , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Activación Enzimática , Femenino , Viabilidad Fetal , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/citología , Miocardio/patología , Fenotipo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/genéticaRESUMEN
SIGNIFICANCE: In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. CRITICAL ISSUES: OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. FUTURE DIRECTIONS: Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485.
Asunto(s)
Metabolismo Energético , Neoplasias/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Neoplasias/etiología , Neoplasias/patología , Estrés Oxidativo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Microambiente TumoralAsunto(s)
Arginina/fisiología , Inmunidad Innata/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Proteínas Proto-Oncogénicas/fisiología , Receptor Toll-Like 4/fisiología , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Animales , Arginina/farmacología , Activación Enzimática/efectos de los fármacos , Ayuno , Humanos , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/metabolismo , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/fisiología , Desnutrición/inmunología , Desnutrición/metabolismo , Ratones , Modelos Inmunológicos , Hipernutrición/inmunología , Hipernutrición/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
Anti-cancer drugs often increase reactive oxygen species (ROS) and cause DNA damage. Here, we highlight a new cross talk between chronic oxidative stress and the histone variant H2AX, a key player in DNA repair. We observe that persistent accumulation of ROS, due to a deficient JunD-/Nrf2-antioxidant response, reduces H2AX protein levels. This effect is mediated by an enhanced interaction of H2AX with the E3 ubiquitin ligase RNF168, which is associated with H2AX poly-ubiquitination and promotes its degradation by the proteasome. ROS-mediated H2AX decrease plays a crucial role in chemosensitivity. Indeed, cycles of chemotherapy that sustainably increase ROS reduce H2AX protein levels in Triple-Negative breast cancer (TNBC) patients. H2AX decrease by such treatment is associated with an impaired NRF2-antioxidant response and is indicative of the therapeutic efficiency and survival of TNBC patients. Thus, our data describe a novel ROS-mediated regulation of H2AX turnover, which provides new insights into genetic instability and treatment efficacy in TNBC patients.
Asunto(s)
Antineoplásicos/farmacología , Histonas/metabolismo , Estrés Oxidativo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Neoplasias de la Mama Triple Negativas/patología , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Sterol regulatory element binding protein-1c (SREBP-1c) is a transcription factor that mediates insulin effects on hepatic gene expression. It is itself transcriptionally stimulated by insulin in hepatocytes. Here we show that SREBP-1c mRNA is expressed in adult rat skeletal muscles and that this expression is decreased by diabetes. The regulation of SREBP-1c expression was then assessed in cultures of adult muscle satellite cells. These cells form spontaneously contracting multinucleated myotubes within 7 days of culture. SREBP-1c mRNA is expressed in contracting myotubes. A 4-h treatment with 100 nmol/l insulin increases SREBP-1c expression and nuclear abundance by two- to threefold in myotubes. In cultured myotubes, insulin increases the expression of glycolytic and lipogenic enzyme genes and inhibits the 9-cis retinoic acid-induced UCP3 expression. These effects of insulin are mimicked by adenovirus-mediated expression of a transcriptionally active form of SREBP-1c. We conclude that in skeletal muscles, SREBP-1c expression is sensitive to insulin and can transduce the positive and negative actions of the hormone on specific genes and thus has a pivotal role in long-term muscle insulin sensitivity.
Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/farmacología , Proteínas Portadoras/genética , Proteínas de Unión al ADN/farmacología , Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Lípidos/biosíntesis , Músculo Esquelético/fisiología , Factores de Transcripción , Alitretinoína , Animales , Northern Blotting , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Diabetes Mellitus Experimental/metabolismo , Regulación de la Expresión Génica , Insulina/farmacología , Canales Iónicos , Hígado/metabolismo , Masculino , Proteínas Mitocondriales , Contracción Muscular , Músculo Esquelético/química , Isoformas de Proteínas/genética , ARN Mensajero/análisis , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Transfección , Tretinoina/farmacología , Proteína Desacopladora 3RESUMEN
Ovarian cancer is a silent disease with a poor prognosis that urgently requires new therapeutic strategies. In low-grade ovarian tumours, mutations in the MAP3K BRAF gene constitutively activate the downstream kinase MEK. Here we demonstrate that an additional MAP3K, MAP3K8 (TPL-2/COT), accumulates in high-grade serous ovarian carcinomas (HGSCs) and is a potential prognostic marker for these tumours. By combining analyses on HGSC patient cohorts, ovarian cancer cells and patient-derived xenografts, we demonstrate that MAP3K8 controls cancer cell proliferation and migration by regulating key players in G1/S transition and adhesion dynamics. In addition, we show that the MEK pathway is the main pathway involved in mediating MAP3K8 function, and that MAP3K8 exhibits a reliable predictive value for the effectiveness of MEK inhibitor treatment. Our data highlight key roles for MAP3K8 in HGSC and indicate that MEK inhibitors could be a useful treatment strategy, in combination with conventional chemotherapy, for this disease.
Asunto(s)
Antineoplásicos/farmacología , Cistadenocarcinoma Seroso/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias Ováricas/enzimología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Antineoplásicos/uso terapéutico , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinogénesis , Línea Celular Tumoral , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/tratamiento farmacológico , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Pronóstico , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The TSC1/TSC2 tumor-suppressor complex regulates cell growth via controlling the mTOR (mammalian target of rapamycin) signaling pathway, which contributes to several disease processes, including cancer and diabetes. Abnormal activation of mTOR uncouples anabolic cell growth processes such as protein and lipid synthesis from external growth factor or nutrient cues. However, abnormal activation of mTOR upon loss of TSC1/TSC2 complex function is now known to lead to compensatory mechanisms that restrict the development of malignant tumors. The rare occurrence of complete loss of TSC1/TSC2 function in human tumors suggests that retaining growth suppressor activity might be beneficial during tumour evolution, perhaps by promoting survival when cells grow in a nutrient-limited environment.
Asunto(s)
Neoplasias/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular , Retroalimentación Fisiológica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Neoplasias/patología , Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis TuberosaRESUMEN
The innate immune response is influenced by the nutrient status of the host. Mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase 1 (ERK1) and ERK2, are activated after the stimulation of macrophages with bacterial lipopolysaccharide (LPS) and are necessary for the optimal production of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha). We uncovered a role for the extracellular nutrient arginine in the activation of ERK1/2 in LPS-stimulated macrophages. Arginine facilitated the activation of MAPKs by preventing the dephosphorylation and inactivation of the MAPK kinase kinase tumor-promoting locus 2 (TPL-2). Starvation of mice decreased the concentration of arginine in the plasma and impaired the activation of ERK1/2 by LPS. Supplementation of starved mice with arginine promoted the subsequent activation of ERK1/2 and the production of TNF-alpha in response to LPS. Thus, arginine is critical for two aspects of the innate immune response in macrophages: It is the precursor used in the generation of the antimicrobial mediator nitric oxide, and it facilitates MAPK activation and consequently cytokine production.
Asunto(s)
Arginina/metabolismo , Activación Enzimática/inmunología , Inmunidad Innata/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 4/metabolismo , Aminoácidos/sangre , Animales , Arginina/farmacología , Western Blotting , Cromatografía por Intercambio Iónico , Activación Enzimática/efectos de los fármacos , Inmunohistoquímica , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
When phosphorylated by mTORC1/S6K, the insulin receptor substrate (IRS-1) is targeted for ubiquitination and proteasomal degradation. In a recent issue of Molecular Cell, Xu et al. reveal that the E3 ubiquitin-ligase CUL7/Fbw8 targets IRS-1 for degradation, thereby implicating this enzyme in the regulation of insulin signaling.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Cullin/metabolismo , Proteínas F-Box/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Cullin/genética , Proteínas Sustrato del Receptor de Insulina , Ratones , Modelos Biológicos , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteómica , UbiquitinaciónRESUMEN
A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR.
Asunto(s)
Hígado/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Autofagia , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Células Cultivadas , Quinasa del Factor 2 de Elongación , Factores Eucarióticos de Iniciación/metabolismo , Hepatocitos/enzimología , Hepatocitos/metabolismo , Hepatocitos/patología , Insulina/metabolismo , Leucina/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/crecimiento & desarrollo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Atrofia Muscular/enzimología , Atrofia Muscular/genética , Atrofia Muscular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
The eukaryotic translation initiation factor 4B (eIF4B) plays a critical role in recruiting the 40S ribosomal subunit to the mRNA. In response to insulin, eIF4B is phosphorylated on Ser422 by S6K in a rapamycin-sensitive manner. Here we demonstrate that the p90 ribosomal protein S6 kinase (RSK) phosphorylates eIF4B on the same residue. The relative contribution of the RSK and S6K modules to the phosphorylation of eIF4B is growth factor-dependent, and the two phosphorylation events exhibit very different kinetics. The S6K and RSK proteins are members of the AGC protein kinase family, and require PDK1 phosphorylation for activation. Consistent with this requirement, phosphorylation of eIF4B Ser422 is abrogated in PDK1 null embryonic stem cells. Phosphorylation of eIF4B on Ser422 by RSK and S6K is physiologically significant, as it increases the interaction of eIF4B with the eukaryotic translation initiation factor 3.