Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 83(2): 219-236.e7, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36634675

RESUMEN

RNA methylation at adenosine N6 (m6A) is one of the most common RNA modifications, impacting RNA stability, transport, and translation. Previous studies uncovered RNA destabilization in amyotrophic lateral sclerosis (ALS) models in association with accumulation of the RNA-binding protein TDP43. Here, we show that TDP43 recognizes m6A RNA and that RNA methylation is critical for both TDP43 binding and autoregulation. We also observed extensive RNA hypermethylation in ALS spinal cord, corresponding to methylated TDP43 substrates. Emphasizing the importance of m6A for TDP43 binding and function, we identified several m6A factors that enhance or suppress TDP43-mediated toxicity via single-cell CRISPR-Cas9 in primary neurons. The most promising modifier-the canonical m6A reader YTHDF2-accumulated within ALS spinal neurons, and its knockdown prolonged the survival of human neurons carrying ALS-associated mutations. Collectively, these data show that m6A modifications modulate RNA binding by TDP43 and that m6A is pivotal for TDP43-related neurodegeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Metilación , Neuronas/metabolismo , ARN/genética , ARN/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183409

RESUMEN

Australia has the highest historically recorded rate of mammalian extinction in the world, with 34 terrestrial species declared extinct since European colonization in 1788. Among Australian mammals, rodents have been the most severely affected by these recent extinctions; however, given a sparse historical record, the scale and timing of their decline remain unresolved. Using museum specimens up to 184 y old, we generate genomic-scale data from across the entire assemblage of Australian hydromyine rodents (i.e., eight extinct species and their 42 living relatives). We reconstruct a phylogenomic tree for these species spanning ∼5.2 million years, revealing a cumulative total of 10 million years (>10%) of unique evolutionary history lost to extinction within the past ∼150 y. We find no evidence for reduced genetic diversity in extinct species just prior to or during decline, indicating that their extinction was extremely rapid. This suggests that populations of extinct Australian rodents were large prior to European colonization, and that genetic diversity does not necessarily protect species from catastrophic extinction. In addition, comparative analyses suggest that body size and biome interact to predict extinction and decline, with larger species more likely to go extinct. Finally, we taxonomically resurrect a species from extinction, Gould's mouse (Pseudomys gouldii Waterhouse, 1839), which survives as an island population in Shark Bay, Western Australia (currently classified as Pseudomys fieldi Waite, 1896). With unprecedented sampling across a radiation of extinct and living species, we unlock a previously inaccessible historical perspective on extinction in Australia. Our results highlight the capacity of collections-based research to inform conservation and management of persisting species.


Asunto(s)
Extinción Biológica , Genómica , Museos , Roedores/genética , Animales , Australia , Calibración , Europa (Continente) , Exoma/genética , Variación Genética , Genoma , Heterocigoto , Filogenia , Riesgo , Especificidad de la Especie
3.
Evol Dev ; 25(4-5): 257-273, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259250

RESUMEN

Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry-the relationship between skull shape and size during growth-can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.


Asunto(s)
Evolución Biológica , Cráneo , Animales , Filogenia , Cráneo/anatomía & histología , Ballenas/anatomía & histología , Cabeza
4.
Proc Biol Sci ; 290(2011): 20231932, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018114

RESUMEN

Sirenians are a well-known example of morphological adaptation to a shallow-water grazing diet characterized by a modified feeding apparatus and orofacial morphology. Such adaptations were accompanied by an anterior tooth reduction associated with the development of keratinized pads, the evolution of which remains elusive. Among sirenians, the recently extinct Steller's sea cow represents a special case for being completely toothless. Here, we used µ-CT scans of sirenian crania to understand how motor-sensor systems associated with tooth innervation responded to innovations such as keratinized pads and continuous dental replacement. In addition, we surveyed nine genes associated with dental reduction for signatures of loss of function. Our results reveal how patterns of innervation changed with modifications of the dental formula, especially continuous replacement in manatees. Both our morphological and genomic data show that dental development was not completely lost in the edentulous Steller's sea cows. By tracing the phylogenetic history of tooth innervation, we illustrate the role of development in promoting the innervation of keratinized pads, similar to the secondary use of dental canals for innervating neomorphic keratinized structures in other tetrapod groups.


Asunto(s)
Pérdida de Diente , Diente , Animales , Femenino , Bovinos , Filogenia , Queratinas , Citoesqueleto
5.
Proc Biol Sci ; 289(1980): 20221090, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35919995

RESUMEN

Extreme asymmetry of the skull is one of the most distinctive traits that characterizes toothed whales (Odontoceti, Cetacea). The origin and function of cranial asymmetry are connected to the evolution of echolocation, the ability to use high-frequency sounds to navigate the surrounding environment. Although this novel phenotype must arise through changes in cranial development, the ontogeny of cetacean asymmetry has never been investigated. Here we use three-dimensional geometric morphometrics to quantify the changes in degree of asymmetry and skull shape during prenatal and postnatal ontogeny for five genera spanning odontocete diversity (oceanic dolphins, porpoises and beluga). Asymmetry in early ontogeny starts low and tracks phylogenetic relatedness of taxa. Distantly related taxa that share aspects of their ecology overwrite these initial differences via heterochronic shifts, ultimately converging on comparable high levels of skull asymmetry. Porpoises maintain low levels of asymmetry into maturity and present a decelerated rate of growth, probably retained from the ancestral condition. Ancestral state reconstruction of allometric trajectories demonstrates that both paedomorphism and peramorphism contribute to cranial shape diversity across odontocetes. This study provides a striking example of how divergent developmental pathways can produce convergent ecological adaptations, even for some of the most unusual phenotypes exhibited among vertebrates.


Asunto(s)
Ecolocación , Marsopas , Animales , Evolución Biológica , Filogenia , Cráneo , Ballenas
6.
Proc Biol Sci ; 288(1949): 20210319, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33906406

RESUMEN

Differences in jaw function experienced through ontogeny can have striking consequences for evolutionary outcomes, as has been suggested for the major clades of mammals. By contrast to placentals, marsupial newborns have an accelerated development of the head and forelimbs, allowing them to crawl to the mother's teats to suckle within just a few weeks of conception. The different functional requirements that marsupial newborns experience in early postnatal development have been hypothesized to have constrained their morphological diversification relative to placentals. Here, we test whether marsupials have a lower ecomorphological diversity and rate of evolution in comparison with placentals, focusing specifically on their jaws. To do so, a geometric morphometric approach was used to characterize jaw shape for 151 living and extinct species of mammals spanning a wide phylogenetic, developmental and functional diversity. Our results demonstrate that jaw shape is significantly influenced by both reproductive mode and diet, with substantial ecomorphological convergence between metatherians and eutherians. However, metatherians have markedly lower disparity and rate of mandible shape evolution than observed for eutherians. Thus, despite their ecomorphological diversity and numerous convergences with eutherians, the evolution of the jaw in metatherians appears to be strongly constrained by their specialized reproductive biology.


Asunto(s)
Marsupiales , Animales , Evolución Biológica , Euterios , Maxilares , Filogenia
7.
Am J Phys Anthropol ; 174(3): 407-417, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33244782

RESUMEN

OBJECTIVES: Incomplete and/or biased sampling either on a taxonomic or geographic level can lead to delusive phylogenetic and phylogeographic inferences. However, a complete taxonomic and geographical sampling is often and for various reasons impossible, particularly for widespread taxa such as baboons (Papio spp.). Previous studies on baboon phylogeography identified several sampling gaps, some of which we fill by investigating additional material including samples from museum specimens. MATERIALS AND METHODS: We generated 10 new mitochondrial genomes either via conventional PCR and subsequent Sanger sequencing from two blood samples or via high-throughput shotgun sequencing from degraded DNA extracted from eight museum specimens. Phylogenetic relationships and divergence times among baboon lineages were determined using maximum-likelihood and Bayesian inferences. RESULTS: We identified new mitochondrial lineages in baboons from Central Africa (Chad, the Central African Republic), from the Mahale, and the Udzungwa Mountains (Tanzania), with the latter likely representing a case of mitochondrial capture from sympatric kipunjis (Rungwecebus kipunji). We also found that the mitochondrial clades of olive baboons found in Ivory Coast and Tanzania extend into Niger and the Democratic Republic of Congo, respectively. Moreover, an olive baboon from Sierra Leone carries a mitochondrial haplotype usually found in Guinea baboons, suggesting gene flow between these two species. DISCUSSION: The extension of the geographic sampling by including samples from areas difficult to visit or from populations that are most likely extirpated has improved the geographic and temporal resolution of the mitochondrial phylogeny of baboons considerably. Our study also shows the great value of museum material for genetic analyses even when DNA is highly degraded.


Asunto(s)
Genoma Mitocondrial/genética , Papio/clasificación , Papio/genética , África del Sur del Sahara , Animales , Femenino , Haplotipos , Masculino , Filogeografía
8.
J Zoo Wildl Med ; 51(3): 578-590, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33480533

RESUMEN

Diffuse idiopathic skeletal hyperostosis (DISH) is a disorder of unknown cause, in which new bone forms in soft tissues attached to the skeleton. Originally described in humans, in whom it is quite common, it is usually asymptomatic. New bone may completely bridge across joints, especially in the spine. However, it can be difficult to distinguish from diseases such as spondyloarthritis and spondylosis. With safer and increased use of radiography in diagnosis, the unfamiliar skeletal changes of asymptomatic DISH may now be coincidentally revealed during investigation of other disorders and result in misdiagnosis and unnecessary treatment. There have been case reports of its occurrence in great apes, but this is the first study to illustrate its appearances in a series of 11 skeletons of western and eastern lowland gorillas (Gorilla gorilla gorilla and Gorilla beringei graueri) from zoos in Europe and the United States. The study combines a review of available clinical and postmortem records with examination of the skeletons and radiologic investigation, such as computed tomography (CT). The results indicate that the disorder is probably common in older (>30 yr) captive gorillas, but that it is asymptomatic. It was not symptomatic during life in any of these animals. Several cases had unexpected features, such as extensive involvement of the thorax and extra-articular sacroiliac and tibiofibular joint fusions that are not typical in humans. By illustrating these skeletons, the study should aid differentiation of DISH from spondylosis (syn spondylosis deformans) and spondyloarhritis. It illustrates those features that are atypical of human DISH. CT scanning is valuable in such cases for examining diagnostically important areas such as sacroiliac joints. Increased awareness of DISH should help with understanding its cause, both in gorillas and humans.


Asunto(s)
Enfermedades del Simio Antropoideo/diagnóstico , Enfermedades del Simio Antropoideo/patología , Gorilla gorilla , Hiperostosis Esquelética Difusa Idiopática/diagnóstico , Animales , Animales de Zoológico , Hiperostosis Esquelética Difusa Idiopática/patología , Hiperostosis Esquelética Difusa Idiopática/veterinaria
9.
Proc Biol Sci ; 286(1913): 20192025, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31640514

RESUMEN

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representative of the species. Here, we investigate sex ratios in over two million bird and mammal specimen records from five large international museums. We found a slight bias towards males in birds (40% females) and mammals (48% females), but this varied among orders. The proportion of female specimens has not significantly changed in 130 years, but has decreased in species with showy male traits like colourful plumage and horns. Body size had little effect. Male bias was strongest in name-bearing types; only 27% of bird and 39% of mammal types were female. These results imply that previous studies may be impacted by undetected male bias, and vigilance is required when using specimen data, collecting new specimens and designating types.


Asunto(s)
Aves , Mamíferos , Museos , Animales , Sesgo , Factores Sexuales
10.
Curr Biol ; 33(11): 2136-2150.e4, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37119816

RESUMEN

Within mammals, different reproductive strategies (e.g., egg laying, live birth of extremely underdeveloped young, and live birth of well-developed young) have been linked to divergent evolutionary histories. How and when developmental variation across mammals arose is unclear. While egg laying is unquestionably considered the ancestral state for all mammals, many long-standing biases treat the extreme underdeveloped state of marsupial young as the ancestral state for therian mammals (clade including both marsupials and placentals), with the well-developed young of placentals often considered the derived mode of development. Here, we quantify mammalian cranial morphological development and estimate ancestral patterns of cranial shape development using geometric morphometric analysis of the largest comparative ontogenetic dataset of mammals to date (165 specimens, 22 species). We identify a conserved region of cranial morphospace for fetal specimens, after which cranial morphology diversified through ontogeny in a cone-shaped pattern. This cone-shaped pattern of development distinctively reflected the upper half of the developmental hourglass model. Moreover, cranial morphological variation was found to be significantly associated with the level of development (position on the altricial-precocial spectrum) exhibited at birth. Estimation of ancestral state allometry (size-related shape change) reconstructs marsupials as pedomorphic relative to the ancestral therian mammal. In contrast, the estimated allometries for the ancestral placental and ancestral therian were indistinguishable. Thus, from our results, we hypothesize that placental mammal cranial development most closely reflects that of the ancestral therian mammal, while marsupial cranial development represents a more derived mode of mammalian development, in stark contrast to many interpretations of mammalian evolution.


Asunto(s)
Marsupiales , Embarazo , Animales , Femenino , Marsupiales/genética , Marsupiales/anatomía & histología , Evolución Biológica , Placenta , Mamíferos/genética , Mamíferos/anatomía & histología , Cráneo/anatomía & histología
11.
Zool Res ; 42(4): 428-432, 2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34114756

RESUMEN

Accurate information on name-bearing types, including corresponding type localities, is essential for proper taxonomy. However, such geographic information is often missing or unreliable. The localities of type specimens collected 100-200 years ago can be difficult to trace due to changes in local names or simple inaccuracies. Such a case can be found for the gray-backed sportive lemur (Lepilemur dorsalis), with its type locality imprecisely fixed as Northwest Madagascar. In recent years, eight species have been newly described for the Inter-River-Systems (IRSs) of this region, however the designation of L. dorsalis remains controversial due to a lack of a precise type locality. Here, we sequenced the complete mitochondrial genomes (mitogenomes) of type specimens of L. dorsalis and L. grandidieri, which is currently recognized as a synonym of L. dorsalis and compared their sequences with those of samples of known provenance from different IRSs. Results showed that the two type specimens of L. dorsalis and L. grandidieri had identical mitogenome sequences and clustered closely with samples collected in IRS V, indicating that the type locality could be fixed to IRS V. Consequently, L. dorsalis occurs in IRS V, and L. grandidieri and L. mittermeieri are junior synonyms of L. dorsalis. This finding demonstrates the value of type specimens for clarifying phylogeographic and taxonomic questions and clarifies the taxonomy of sportive lemurs in Northwest Madagascar.


Asunto(s)
Distribución Animal , Genoma Mitocondrial , Strepsirhini/genética , Animales , ADN Mitocondrial , Madagascar , Filogenia , Filogeografía , Especificidad de la Especie , Strepsirhini/clasificación , Strepsirhini/fisiología
12.
Curr Biol ; 31(11): 2404-2409.e2, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33961784

RESUMEN

Modern pinnipeds (true and eared seals) employ two radically different swimming styles, with true seals (phocids) propelling themselves primarily with their hindlimbs, whereas eared seals (otariids) rely on their wing-like foreflippers.1,2 Current explanations of this functional dichotomy invoke either pinniped diphyly3-5 or independent colonizations of the ocean by related but still largely terrestrial ancestors.6-8 Here, we show that pinniped swimming styles form an anatomical, functional, and behavioral continuum, within which adaptations for forelimb swimming can arise directly from a hindlimb-propelled bauplan. Within phocids, southern seals (monachines) show a convergent trend toward wing-like, hydrodynamically efficient forelimbs used for propulsion during slow swimming, turning, bursts of speed, or when initiating movement. This condition is most evident in leopard seals, which have well-integrated foreflippers with little digit mobility, reduced claws, and hydrodynamic characteristics comparable to those of forelimb-propelled otariids. Using monachines as a model, we suggest that the last common ancestor of modern seals may have been hindlimb-propelled and aquatically adapted, thus resolving the apparent contradiction at the root of pinniped evolution.


Asunto(s)
Caniformia , Lobos Marinos , Phocidae , Natación , Animales , Miembro Anterior
13.
J Clin Invest ; 130(3): 1139-1155, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31714900

RESUMEN

Cortical hyperexcitability and mislocalization of the RNA-binding protein TDP43 are highly conserved features in amyotrophic lateral sclerosis (ALS). Nevertheless, the relationship between these phenomena remains poorly defined. Here, we showed that hyperexcitability recapitulates TDP43 pathology by upregulating shortened TDP43 (sTDP43) splice isoforms. These truncated isoforms accumulated in the cytoplasm and formed insoluble inclusions that sequestered full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression was toxic to mammalian neurons, suggesting neurodegeneration arising from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts were enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 within neurons and glia of ALS patients. Collectively, these studies uncover a pathogenic role for alternative TDP43 isoforms in ALS, and implicate sTDP43 as a key contributor to the susceptibility of motor neurons in this disorder.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/biosíntesis , Neuronas Motoras/metabolismo , Neuroglía/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Ratones , Neuronas Motoras/patología , Neuroglía/patología , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética
14.
Wellcome Open Res ; 5: 27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33215047

RESUMEN

We present a genome assembly from an individual male Sciurus carolinensis (the eastern grey squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.82 gigabases in span. The majority of the assembly (92.3%) is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.

15.
Wellcome Open Res ; 5: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32258427

RESUMEN

We present a genome assembly from an individual male Lutra lutra (the Eurasian river otter; Vertebrata; Mammalia; Eutheria; Carnivora; Mustelidae). The genome sequence is 2.44 gigabases in span. The majority of the assembly is scaffolded into 20 chromosomal pseudomolecules, with both X and Y sex chromosomes assembled.

16.
Wellcome Open Res ; 5: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587897

RESUMEN

We present a genome assembly from an individual male Sciurus vulgaris (the Eurasian red squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.88 gigabases in span. The majority of the assembly is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.

17.
Zool Res ; 41(6): 656-669, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33171548

RESUMEN

Trachypithecus, which currently contains 20 species divided into four groups, is the most speciose and geographically dispersed genus among Asian colobines. Despite several morphological and molecular studies, however, its evolutionary history and phylogeography remain poorly understood. Phayre's langur ( Trachypithecus phayrei) is one of the most widespread members of the genus, but details on its actual distribution and intraspecific taxonomy are limited and controversial. Thus, to elucidate the evolutionary history of Trachypithecus and to clarify the intraspecific taxonomy and distribution of T. phayrei, we sequenced 41 mitochondrial genomes from georeferenced fecal samples and museum specimens, including two holotypes. Phylogenetic analyses revealed a robustly supported phylogeny of Trachypithecus, suggesting that the T. pileatus group branched first, followed by the T. francoisi group, and the T. cristatus and T. obscurus groups most recently. The four species groups diverged from each other 4.5-3.1 million years ago (Ma), while speciation events within these groups occurred much more recently (1.6-0.3 Ma). Within T. phayrei, we found three clades that diverged 1.0-0.9 Ma, indicating the existence of three rather than two taxa. Following the phylogenetic species concept and based on genetic, morphological, and ecological differences, we elevate the T. phayrei subspecies to species level, describe a new species from central Myanmar, and refine the distribution of the three taxa. Overall, our study highlights the importance of museum specimens and provides new insights not only into the evolutionary history of T. phayrei but the entire Trachypithecus genus as well.


Asunto(s)
Genoma Mitocondrial , Presbytini/genética , Distribución Animal , Animales , Asia Sudoriental , Filogenia , Presbytini/clasificación , Presbytini/fisiología , Especificidad de la Especie
18.
J Vis Exp ; (143)2019 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-30735193

RESUMEN

Standard cytotoxicity assays, which require the collection of lysates or fixed cells at multiple time points, have limited sensitivity and capacity to assess factors that influence neuronal fate. These assays require the observation of separate populations of cells at discrete time points. As a result, individual cells cannot be followed prospectively over time, severely limiting the ability to discriminate whether subcellular events, such as puncta formation or protein mislocalization, are pathogenic drivers of disease, homeostatic responses, or merely coincidental phenomena. Single-cell longitudinal microscopy overcomes these limitations, allowing the researcher to determine differences in survival between populations and draw causal relationships with enhanced sensitivity. This video guide will outline a representative workflow for experiments measuring single-cell survival of rat primary cortical neurons expressing a fluorescent protein marker. The viewer will learn how to achieve high-efficiency transfections, collect and process images enabling the prospective tracking of individual cells, and compare the relative survival of neuronal populations using Cox proportional hazards analysis.


Asunto(s)
Microscopía Fluorescente/métodos , Neuronas/citología , Animales , Muerte Celular , Supervivencia Celular , Corteza Cerebral/citología , Neuronas/metabolismo , Modelos de Riesgos Proporcionales , Ratas Long-Evans
19.
Zootaxa ; 4566(1): zootaxa.4566.1.1, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-31716448

RESUMEN

The Pig-footed Bandicoot, Chaeropus ecaudatus, an extinct arid-adapted bandicoot, was named in 1838 based on a specimen without a tail from the Murray River in New South Wales. Two additional species were later named, C. castanotis and C. occidentalis, which have since been synonymised with C. ecaudatus. Taxonomic research on the genus is rather difficult because of the limited material available for study. Aside from the types of C. castanotis and C. occidentalis housed at the Natural History Museum in London, and the type of C. ecaudatus at the Australian Museum in Sydney, there are fewer than 30 other modern specimens in other collections scattered around the world. Examining skeletal and dental characters for several specimens, and using a combination of traditional morphology, morphometrics, palaeontology and molecular phylogenetics, we have identified two distinct species, C. ecaudatus and C. yirratji sp. nov., with C. ecaudatus having two distinct subspecies, C. e. ecaudatus and C. e. occidentalis. We use palaeontological data to reconstruct the pre-European distribution of the two species, and review the ecological information known about these extinct taxa.


Asunto(s)
Fósiles , Mamíferos , Animales , Australia , Filogenia
20.
Elife ; 72018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015619

RESUMEN

Abnormalities in nucleic acid processing are associated with the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in Matrin 3 (MATR3), a poorly understood DNA- and RNA-binding protein, cause familial ALS/FTD, and MATR3 pathology is a feature of sporadic disease, suggesting that MATR3 dysfunction is integrally linked to ALS pathogenesis. Using a rat primary neuron model to assess MATR3-mediated toxicity, we noted that neurons were bidirectionally vulnerable to MATR3 levels, with pathogenic MATR3 mutants displaying enhanced toxicity. MATR3's zinc finger domains partially modulated toxicity, but elimination of its RNA recognition motifs had no effect on survival, instead facilitating its self-assembly into liquid-like droplets. In contrast to other RNA-binding proteins associated with ALS, cytoplasmic MATR3 redistribution mitigated neurodegeneration, suggesting that nuclear MATR3 mediates toxicity. Our findings offer a foundation for understanding MATR3-related neurodegeneration and how nucleic acid binding functions, localization, and pathogenic mutations drive sporadic and familial disease.


Asunto(s)
Núcleo Celular/metabolismo , Neurotoxinas/toxicidad , Proteínas Asociadas a Matriz Nuclear/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Supervivencia Celular , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Asociadas a Matriz Nuclear/química , Proteínas Asociadas a Matriz Nuclear/genética , Unión Proteica , Estabilidad Proteica , Motivo de Reconocimiento de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ratas , Ratas Long-Evans , Solubilidad , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA