Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 195(4): 3097-3118, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38588051

RESUMEN

In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.


Asunto(s)
Acetiltransferasas , Proteínas de Arabidopsis , Arabidopsis , Acetiltransferasa E N-Terminal , Inmunidad de la Planta , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa A N-Terminal/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa E N-Terminal/metabolismo
2.
New Phytol ; 228(2): 554-569, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32548857

RESUMEN

In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.


Asunto(s)
Arabidopsis , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Estrés Salino
3.
Dtsch Arztebl Int ; (Forthcoming)2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39158357

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) yields important information on the development and current status of many different diseases. Whole-body MRI was accordingly made a part of the multicenter, population-based NAKO Health Study. The present analysis concerns the feasibility of the baseline MRI examination and various aspects of quality assurance over the period 2014-2019. METHODS: 32 252 participants in the NAKO Health Study, aged 20 to 74, who had no contraindication to MRI were invited to undergo scanning in one of five MRI study centers across Germany. The whole-body MRI scan took about one hour and consisted of sequences for the visualization of structural and functional features of the brain, musculoskeletal system, cardiovascular system, and thoracoabdominal system. A comprehensive quality-assurance assessment was carried out, with evaluation of adverse events, the completeness of the MRI protocols, the participants' subjective perceptions, and image quality. RESULTS: 31 578 participants (97.9%) were successfully included in the MRI study. They reported a high level of comfort and suffered no severe adverse events; mild adverse events occurred in only four participants. Depending on the imaging sequence, the image quality was rated as excellent in 80.2% to 96.8% of cases. Quality assessment with respect to structural features of the brain revealed high consistency across study centers, as well as with regard to age-and sex-based differences in brain volume (men, 1203.81 ± 102.06 cm³; women, 1068.10 ± 86.69 cm³). CONCLUSION: Whole-body MRI was successfully implemented in the NAKO baseline examination and was associated with high patient comfort and very good image quality. The imaging biomarkers of the brain confirmed previously observed differences based on age and sex, underscoring the feasibility of data pooling.

4.
Sci Adv ; 8(24): eabn6153, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704578

RESUMEN

In humans, the Huntingtin yeast partner K (HYPK) binds to the ribosome-associated Nα-acetyltransferase A (NatA) complex that acetylates ~40% of the proteome in humans and Arabidopsis thaliana. However, the relevance of HsHYPK for determining the human N-acetylome is unclear. Here, we identify the AtHYPK protein as the first in vivo regulator of NatA activity in plants. AtHYPK physically interacts with the ribosome-anchoring subunit of NatA and promotes Nα-terminal acetylation of diverse NatA substrates. Loss-of-AtHYPK mutants are remarkably resistant to drought stress and strongly resemble the phenotype of NatA-depleted plants. The ectopic expression of HsHYPK rescues this phenotype. Combined transcriptomics, proteomics, and N-terminomics unravel that HYPK impairs plant metabolism and development, predominantly by regulating NatA activity. We demonstrate that HYPK is a critical regulator of global proteostasis by facilitating masking of the recently identified nonAc-X2/N-degron. This N-degron targets many nonacetylated NatA substrates for degradation by the ubiquitin-proteasome system.


Asunto(s)
Arabidopsis , Acetiltransferasa A N-Terminal , Acetilación , Acetiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa E N-Terminal/metabolismo , Proteostasis
5.
Nat Commun ; 13(1): 810, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145090

RESUMEN

N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability.


Asunto(s)
Acetiltransferasas/metabolismo , Plantas/metabolismo , Proteoma/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Arabidopsis/metabolismo , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA