Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Immunol ; 14(3): 298-305, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23354484

RESUMEN

The role of autophagy in plasma cells is unknown. Here we found notable autophagic activity in both differentiating and long-lived plasma cells and investigated its function through the use of mice with conditional deficiency in the essential autophagic molecule Atg5 in B cells. Atg5(-/-) differentiating plasma cells had a larger endoplasmic reticulum (ER) and more ER stress signaling than did their wild-type counterparts, which led to higher expression of the transcriptional repressor Blimp-1 and immunoglobulins and more antibody secretion. The enhanced immunoglobulin synthesis was associated with less intracellular ATP and more death of mutant plasma cells, which identified an unsuspected autophagy-dependent cytoprotective trade-off between immunoglobulin synthesis and viability. In vivo, mice with conditional deficiency in Atg5 in B cells had defective antibody responses, complete selection in the bone marrow for plasma cells that escaped Atg5 deletion and fewer antigen-specific long-lived bone marrow plasma cells than did wild-type mice, despite having normal germinal center responses. Thus, autophagy is specifically required for plasma cell homeostasis and long-lived humoral immunity.


Asunto(s)
Autofagia , Linfocitos B/metabolismo , Inmunoglobulinas/biosíntesis , Proteínas Asociadas a Microtúbulos/genética , Células Plasmáticas/inmunología , Adenosina Trifosfato , Animales , Formación de Anticuerpos , Proteína 5 Relacionada con la Autofagia , Linfocitos B/inmunología , Células de la Médula Ósea/inmunología , Diferenciación Celular , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Centro Germinal/inmunología , Homeostasis , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factores de Transcripción/biosíntesis
2.
Blood ; 129(15): 2132-2142, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28130214

RESUMEN

Systemic light chain (AL) amyloidosis is caused by the clonal production of an unstable immunoglobulin light chain (LC), which affects organ function systemically. Although pathogenic LCs have been characterized biochemically, little is known about the biology of amyloidogenic plasma cells (PCs). Intrigued by the unique response rates of AL amyloidosis patients to the first-in-class proteasome inhibitor (PI) bortezomib, we purified and investigated patient-derived AL PCs, in comparison with primary multiple myeloma (MM) PCs, the prototypical PI-responsive cells. Functional, biochemical, and morphological characterization revealed an unprecedented intrinsic sensitivity of AL PCs to PIs, even higher than that of MM PCs, associated with distinctive organellar features and expression patterns indicative of cellular stress. These consisted of expanded endoplasmic reticulum (ER), perinuclear mitochondria, and a higher abundance of stress-related transcripts, and were consistent with reduced autophagic control of organelle homeostasis. To test whether PI sensitivity stems from AL LC production, we engineered PC lines that can be induced to express amyloidogenic and nonamyloidogenic LCs, and found that AL LC expression alters cell growth and proteostasis and confers PI sensitivity. Our study discloses amyloidogenic LC production as an intrinsic PC stressor, and identifies stress-responsive pathways as novel potential therapeutic targets. Moreover, we contribute a cellular disease model to dissect the biology of AL PCs.


Asunto(s)
Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Bortezomib/farmacocinética , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Células Plasmáticas/metabolismo , Inhibidores de Proteasoma/farmacocinética , Amiloidosis/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Femenino , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Células Plasmáticas/patología
5.
J Clin Immunol ; 36 Suppl 1: 18-24, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26984755

RESUMEN

Autophagy is a highly conserved pathway that recycles cytosolic material and organelles via lysosomal degradation. Once simplistically viewed as a non-selective survival strategy in dire straits, autophagy has emerged as a tightly regulated process ensuring organelle function, proteome plasticity, cell differentiation and tissue homeostasis, with key roles in physiology and disease. Selective target recognition, mediated by specific adapter proteins, enables autophagy to orchestrate highly specialized functions in innate and adaptive immunity. Among them, the shaping of plasma cells for sustainable antibody production through a negative control on their differentiation program. Moreover, memory B cells and long-lived plasma cells require autophagy to exist. Further, the plasma cell malignancy, multiple myeloma deploys abundant autophagy, essential for homeostasis, survival and drug resistance.


Asunto(s)
Autofagia , Neoplasias de Células Plasmáticas/etiología , Neoplasias de Células Plasmáticas/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Animales , Autofagosomas/inmunología , Autofagosomas/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Proteínas Portadoras/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Neoplasias de Células Plasmáticas/patología , Células Plasmáticas/patología , Unión Proteica , Transducción de Señal
6.
Int J Mol Sci ; 17(4): 443, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27023526

RESUMEN

Autophagy favours metastatic growth through fuelling energy and nutrients and resistance to anoikis, typical of disseminated-tumour cells. The autophagic process, mediated by a unique organelle, the autophagosome, which fuses with lysosomes, is divided into three steps. Several stages, especially early omegasome formation and isolation-membrane initiation, remain controversial; molecular mechanisms involve the small-GTPase Rab5a, which regulates vesicle traffic for autophagosome formation. We examined Rab5a involvement in the function of key members of ubiquitin-conjugation systems, Atg7 and LC3-lipidated, interacting with the scaffold-protein p62. Immunohistochemistry of Rab5a was performed in human specimens of bone metastasis and pair-matched breast carcinoma; the autophagic-molecular mechanisms affected by Rab5a were evaluated in human 1833 bone metastatic cells, derived from breast-carcinoma MDA-MB231 cells. To clarify the role of Rab5a, 1833 cells were transfected transiently with Rab5a-dominant negative, and/or stably with the short-hairpin RNA Atg7, were exposed to two inhibitors of autolysosome function, and LC3II and p62 expression was measured. We showed basal autophagy in bone-metastatic cells and the pivotal role of Rab5a together with Beclin 1 between the early stages, elongation of isolation membrane/closed autophagosome mediated by Atg7, and the late-degradative stages. This regulatory network might occur in bone-metastasis and in high-grade dysplastic lesions, preceding invasive-breast carcinoma and conferring phenotypic characteristics for dissemination.


Asunto(s)
Neoplasias Óseas/patología , Neoplasias de la Mama/patología , Proteínas de Unión al GTP rab5/metabolismo , Autofagia , Proteína 7 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Western Blotting , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Estadificación de Neoplasias , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al GTP rab5/genética
7.
Sci Rep ; 14(1): 7290, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538704

RESUMEN

Bone destruction, a major source of morbidity, is mediated by heightened differentiation and activity of osteoclasts (OC), highly specialized multinucleated myeloid cells endowed with unique bone-resorptive capacity. The molecular mechanisms regulating OC differentiation in the bone marrow are still partly elusive. Here, we aimed to identify new regulatory circuits and actionable targets by comprehensive proteomic characterization of OCgenesis from mouse bone marrow monocytes, adopting two parallel unbiased comparative proteomic approaches. This work disclosed an unanticipated protein signature of OCgenesis, with most gene products currently unannotated in bone-related functions, revealing broad structural and functional cellular reorganization and divergence from macrophagic immune activity. Moreover, we identified the deubiquitinase UCHL1 as the most upregulated cytosolic protein in differentiating OCs. Functional studies proved it essential, as UCHL1 genetic and pharmacologic inhibition potently suppressed OCgenesis. Furthermore, proteomics and mechanistic dissection showed that UCHL1 supports OC differentiation by restricting the anti-OCgenic activity of NRF2, the transcriptional activator of the canonical antioxidant response, through redox-independent stabilization of the NRF2 inhibitor, KEAP1. Besides offering a valuable experimental framework to dissect OC differentiation, our study discloses the essential role of UCHL1, exerted through KEAP1-dependent containment of NRF2 anti-OCgenic activity, yielding a novel potential actionable pathway against bone loss.


Asunto(s)
Resorción Ósea , Osteólisis , Animales , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular/genética , Enzimas Desubicuitinizantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteoclastos/metabolismo , Osteólisis/metabolismo , Proteómica , Ligando RANK/metabolismo
8.
FEBS J ; 289(15): 4383-4397, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34117720

RESUMEN

Multiple myeloma (MM) is a malignancy of plasma cells (PC) that grow within the bone marrow and maintain massive immunoglobulin (Ig) production. Disease evolution is driven by genetic lesions, whose effects on cell biology and fitness underlie addictions and vulnerabilities of myeloma cells. Several genes mutated in myeloma are strictly involved in dictating PC identity and antibody factory function. Here, we evaluate the impact of mutations in IRF4, PRDM1, and XBP1, essential transcription factors driving the B to PC differentiation, on MM cell biology and homeostasis. These factors are highly specialized, with limited overlap in their downstream transcriptional programs. Indeed, IRF4 sustains metabolism, survival, and proliferation, while PRDM1 and XBP1 are mainly responsible for endoplasmic reticulum expansion and sustained Ig secretion. Interestingly, IRF4 undergoes activating mutations and translocations, while PRDM1 and XBP1 are hit by loss-of-function events, raising the hypothesis that containment of the secretory program, but not its complete extinction, may be beneficial to malignant PCs. Finally, recent studies unveiled that also the PRDM1 target, FAM46C/TENT5C, an onco-suppressor uniquely and frequently mutated or deleted in myeloma, is directly and potently involved in orchestrating ER homeostasis and secretory activity. Inactivating mutations found in this gene and its interactors strengthen the notion that reduced secretory capacity confers advantage to myeloma cells. We believe that dissection of the evolutionary pressure on genes driving PC-specific functions in myeloma will disclose the cellular strategies by which myeloma cells maintain an equilibrium between antibody production and survival, thus unveiling novel therapeutic targets.


Asunto(s)
Mieloma Múltiple , Células Plasmáticas , Carcinogénesis/genética , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Oncogenes , Células Plasmáticas/metabolismo
9.
Cell Rep ; 32(12): 108162, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966780

RESUMEN

FAM46C is a non-canonical poly(A) polymerase uniquely mutated in up to 20% of multiple myeloma (MM) patients, implying a tissue-specific tumor suppressor function. Here, we report that FAM46C selectively stabilizes mRNAs encoding endoplasmic reticulum (ER)-targeted proteins, thereby concertedly enhancing the expression of proteins that control ER protein import, folding, N-glycosylation, and trafficking and boosting protein secretion. This role requires the interaction with the ER membrane resident proteins FNDC3A and FNDC3B. In MM cells, FAM46C expression raises secretory capacity beyond sustainability, inducing ROS accumulation, ATP shortage, and cell death. FAM46C activity is regulated through rapid proteasomal degradation or the inhibitory interaction with the ZZ domain of the autophagic receptor p62 that hinders its association with FNDC3 proteins via sequestration in p62+ aggregates. Altogether, our data disclose a p62/FAM46C/FNDC3 circuit coordinating sustainable secretory activity and survival, providing an explanation for the MM-specific oncosuppressive role of FAM46C and uncovering potential therapeutic opportunities against cancer.


Asunto(s)
Fibronectinas/metabolismo , Homeostasis , Nucleotidiltransferasas/metabolismo , Proteostasis , Proteína Sequestosoma-1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Femenino , Silenciador del Gen/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Inmunoglobulinas/metabolismo , Membranas Intracelulares/metabolismo , Masculino , Ratones Endogámicos C57BL , Mieloma Múltiple/patología , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Inhibidores de Proteasoma/farmacología , Agregado de Proteínas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteostasis/efectos de los fármacos , Proteína Sequestosoma-1/química
11.
PLoS One ; 13(8): e0201621, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067838

RESUMEN

To cope with intrinsic and environmental stress, cancer cells rely on adaptive pathways more than non-transformed counterparts. Such non-oncogene addiction offers new therapeutic targets and strategies to overcome chemoresistance. In an attempt to study the role of adaptive pathways in acquired drug resistance in carcinoma cells, we devised a model of in vitro conditioning to three standard chemotherapeutic agents, cisplatin, 5-fluorouracil, and docetaxel, from the epithelial cancer cell line, HEp-2, and investigated the mechanisms underlying reduced drug sensitivity. We found that triple-resistant cells suffered from higher levels of oxidative stress, and showed heightened anti-stress responses, including the antioxidant Nrf2 pathway and autophagy, a conserved pleiotropic homeostatic strategy, mediating the clearance of aggregates marked by the adapter p62/SQSTM1. As a result, re-administration of chemotherapeutic agents failed to induce further accumulation of reactive oxygen species and p62. Moreover, autophagy proved responsible for chemoresistance through the avoidance of p62 accumulation into toxic protein aggregates. Indeed, p62 ablation was sufficient to confer resistance in parental cells, and genetic and pharmacological autophagic inhibition restored drug sensitivity in resistant cells in a p62-dependent manner. Finally, exogenous expression of mutant p62 lacking the ubiquitin- and LC3-binding domains, required for autophagic engulfment, increased chemosensitivity in TDR HEp-2 cells. Altogether, these findings offer a cellular system to investigate the bases of acquired chemoresistance of epithelial cancers and encourage challenging the prognostic and antineoplastic therapeutic potential of p62 toxicity.


Asunto(s)
Antineoplásicos/farmacología , Regulación hacia Abajo , Resistencia a Antineoplásicos , Neoplasias Glandulares y Epiteliales/metabolismo , Proteína Sequestosoma-1/metabolismo , Autofagia , Línea Celular Tumoral , Cisplatino/farmacología , Docetaxel/farmacología , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación , Neoplasias Glandulares y Epiteliales/genética , Estrés Oxidativo , Dominios Proteicos , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/genética
12.
Cancer Cell ; 29(5): 639-652, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27132469

RESUMEN

Proteasome inhibitors have revolutionized outcomes in multiple myeloma, but they are used empirically, and primary and secondary resistance are emerging problems. We have identified TJP1 as a determinant of plasma cell proteasome inhibitor susceptibility. TJP1 suppressed expression of the catalytically active immunoproteasome subunits LMP7 and LMP2, decreased proteasome activity, and enhanced proteasome inhibitor sensitivity in vitro and in vivo. This occurred through TJP1-mediated suppression of EGFR/JAK1/STAT3 signaling, which modulated LMP7 and LMP2 levels. In the clinic, high TJP1 expression in patient myeloma cells was associated with a significantly higher likelihood of responding to bortezomib and a longer response duration, supporting the use of TJP1 as a biomarker to identify patients most likely to benefit from proteasome inhibitors.


Asunto(s)
Receptores ErbB/metabolismo , Janus Quinasa 1/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Animales , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Bortezomib/farmacología , Bortezomib/uso terapéutico , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Supervivencia sin Enfermedad , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/farmacología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Proteína de la Zonula Occludens-1/genética
13.
Autophagy ; 11(7): 1161-78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26043024

RESUMEN

Multiple myeloma (MM) is the paradigmatic proteasome inhibitor (PI) responsive cancer, but many patients fail to respond. An attractive target to enhance sensitivity is (macro)autophagy, recently found essential to bone marrow plasma cells, the normal counterpart of MM. Here, integrating proteomics with hypothesis-driven strategies, we identified the autophagic cargo receptor and adapter protein, SQSTM1/p62 as an essential component of an autophagic reserve that not only synergizes with the proteasome to maintain proteostasis, but also mediates a plastic adaptive response to PIs, and faithfully reports on inherent PI sensitivity. Lentiviral engineering revealed that SQSTM1 is essential for MM cell survival and affords specific PI protection. Under basal conditions, SQSTM1-dependent autophagy alleviates the degradative burden on the proteasome by constitutively disposing of substantial amounts of ubiquitinated proteins. Indeed, its inhibition or stimulation greatly sensitized to, or protected from, PI-induced protein aggregation and cell death. Moreover, under proteasome stress, myeloma cells selectively enhanced SQSTM1 de novo expression and reset its vast endogenous interactome, diverting SQSTM1 from signaling partners to maximize its association with ubiquitinated proteins. Saturation of such autophagic reserve, as indicated by intracellular accumulation of undigested SQSTM1-positive aggregates, specifically discriminated patient-derived myelomas inherently susceptible to PIs from primarily resistant ones. These aggregates correlated with accumulation of the endoplasmic reticulum, which comparative proteomics identified as the main cell compartment targeted by autophagy in MM. Altogether, the data integrate autophagy into our previously established proteasome load-versus-capacity model, and reveal SQSTM1 aggregation as a faithful marker of defective proteostasis, defining a novel prognostic and therapeutic framework for MM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/efectos de los fármacos , Homeostasis/efectos de los fármacos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Inhibidores de Proteasoma/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteína Sequestosoma-1 , Proteínas Ubiquitinadas/metabolismo
14.
J Bone Miner Res ; 29(2): 290-303, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24038328

RESUMEN

The molecular networks controlling bone homeostasis are not fully understood. The common evolution of bone and adaptive immunity encourages the investigation of shared regulatory circuits. MHC Class II Transactivator (CIITA) is a master transcriptional co-activator believed to be exclusively dedicated for antigen presentation. CIITA is expressed in osteoclast precursors, and its expression is accentuated in osteoporotic mice. We thus asked whether CIITA plays a role in bone biology. To this aim, we fully characterized the bone phenotype of two mouse models of CIITA overexpression, respectively systemic and restricted to the monocyte-osteoclast lineage. Both CIITA-overexpressing mouse models revealed severe spontaneous osteoporosis, as assessed by micro-computed tomography and histomorphometry, associated with increased osteoclast numbers and enhanced in vivo bone resorption, whereas osteoblast numbers and in vivo bone-forming activity were unaffected. To understand the underlying cellular and molecular bases, we investigated ex vivo the differentiation of mutant bone marrow monocytes into osteoclasts and immune effectors, as well as osteoclastogenic signaling pathways. CIITA-overexpressing monocytes differentiated normally into effector macrophages or dendritic cells but showed enhanced osteoclastogenesis, whereas CIITA ablation suppressed osteoclast differentiation. Increased c-fms and receptor activator of NF-κB (RANK) signaling underlay enhanced osteoclast differentiation from CIITA-overexpressing precursors. Moreover, by extending selected phenotypic and cellular analyses to additional genetic mouse models, namely MHC Class II deficient mice and a transgenic mouse line lacking a specific CIITA promoter and re-expressing CIITA in the thymus, we excluded MHC Class II expression and T cells from contributing to the observed skeletal phenotype. Altogether, our study provides compelling genetic evidence that CIITA, the molecular switch of antigen presentation, plays a novel, unexpected function in skeletal homeostasis, independent of MHC Class II expression and T cells, by exerting a selective and intrinsic control of osteoclast differentiation and bone resorption in vivo.


Asunto(s)
Presentación de Antígeno/fisiología , Diferenciación Celular/inmunología , Regulación de la Expresión Génica/inmunología , Proteínas Nucleares/inmunología , Osteoclastos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología , Transactivadores/inmunología , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica/genética , Antígenos de Histocompatibilidad Clase II/biosíntesis , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
15.
PLoS One ; 8(9): e74415, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069311

RESUMEN

Inhibition of the proteasome is a widely used strategy for treating multiple myeloma that takes advantage of the heavy secretory load that multiple myeloma cells (MMCs) have to deal with. Resistance of MMCs to proteasome inhibition has been linked to incomplete disruption of proteasomal endoplasmic-reticulum (ER)-associated degradation (ERAD) and activation of non-proteasomal protein degradation pathways. The ATPase p97 (VCP/Cdc48) has key roles in mediating both ERAD and non-proteasomal protein degradation and can be targeted pharmacologically by small molecule inhibition. In this study, we compared the effects of p97 inhibition with Eeyarestatin 1 and DBeQ on the secretory apparatus of MMCs with the effects induced by the proteasome inhibitor bortezomib, and the effects caused by combined inhibition of p97 and the proteasome. We found that p97 inhibition elicits cellular responses that are different from those induced by proteasome inhibition, and that the responses differ considerably between MMC lines. Moreover, we found that dual inhibition of both p97 and the proteasome terminally disrupts ER configuration and intracellular protein metabolism in MMCs. Dual inhibition of p97 and the proteasome induced high levels of apoptosis in all of the MMC lines that we analysed, including bortezomib-adapted AMO-1 cells, and was also effective in killing primary MMCs. Only minor toxicity was observed in untransformed and non-secretory cells. Our observations highlight non-redundant roles of p97 and the proteasome in maintaining secretory homeostasis in MMCs and provide a preclinical conceptual framework for dual targeting of p97 and the proteasome as a potential new therapeutic strategy in multiple myeloma.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Inhibidores Enzimáticos/farmacología , Mieloma Múltiple/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Adenosina Trifosfatasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Inhibidores Enzimáticos/toxicidad , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteasoma/toxicidad , Biosíntesis de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
J Proteomics ; 76 Spec No.: 91-101, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22771314

RESUMEN

It has been shown that a proteomic algorithm based on 8 MALDI TOF MS signals obtained from plasma of NSCLC patients treated with EGFR TKIs, is able to predict patients' clinical outcome. In the current study, we identified the proteins originating 4 out of 8 mass signals in the classification algorithm. Plasma samples collected before the beginning of gefitinib therapy were analyzed by MALDI TOF MS and classified according to the proteomic algorithm in good and poor profiles. Two pools of good and poor classified samples were prepared using MARS and ProteoMiner Protein Enrichment kit before 2DE analysis. Proteins differentially expressed between good and poor 2DE samples were excised from gels and analyzed with MALDI TOF MS and LC MS/MS. The identified proteins were validated by Immunodepletion and Western blot analyses. serum amyloid A protein 1 (SAA1), together with its two truncated forms, was over-expressed in plasma of poor classified patients, and was identified as the protein that generates 4 out of the 8 mass signals composing the proteomic algorithm VeriStrat. SAA levels measured by ELISA in 97 NSCLC patients treated with gefitinib correlated with the clinical outcome of the patients. This article is part of a Special Issue entitled: Integrated omics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas/administración & dosificación , Quinazolinas/administración & dosificación , Proteína Amiloide A Sérica/metabolismo , Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Supervivencia sin Enfermedad , Femenino , Gefitinib , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Masculino , Proteómica , Tasa de Supervivencia
17.
J Leukoc Biol ; 92(5): 921-31, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22685320

RESUMEN

A previously unsuspected, considerable proportion of newly synthesized polypeptides are hydrolyzed rapidly by proteasomes, possibly competing with endogenous substrates and altering proteostasis. In view of the anti-cancer effects of PIs, we set out to achieve a quantitative assessment of proteasome workload in cells hallmarked by different PI sensitivity, namely, a panel of MM cells, and in a dynamic model of plasma cell differentiation, a process that confers exquisite PI sensitivity. Our results suggest that protein synthesis is a key determinant of proteasomal proteolytic burden and PI sensitivity. In different MM cells and in differentiating plasma cells, the average proteolytic work accomplished per proteasome ranges over different orders of magnitude, an unexpected degree of variability, with increased workload invariably associated to increased PI sensitivity. The unfavorable load-versus-capacity balance found in highly PI-sensitive MM lines is accounted for by a decreased total number of immunoproteasomes/cell coupled to enhanced generation of RDPs. Moreover, indicative of cause-effect relationships, attenuating general protein synthesis by the otherwise toxic agent CHX reduces PI sensitivity in activated B and in MM cells. Our data support the view that in plasma cells protein synthesis contributes to determine PI sensitivity by saturating the proteasomal degradative capacity. Quantitating protein synthesis and proteasome workload may thus prove crucial to design novel negative proteostasis regulators against cancer.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Plasmáticas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Mieloma Múltiple/metabolismo , Células Plasmáticas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA